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Cyber Risks in the Smart Home Ecosystem: 
Identification, Modeling, and Pricing 

Executive Summary  
The fourth industrial revolution has emerged (a.k.a., Industry 4.0) in the last few decades and one 

particular area that it encompasses is the Internet of Things (IoT) and smart manufacturing. The 

omnipresence of IoT technologies encourages homeowners to transform their homes into smart homes to 

provide more convenient, comfortable, and secure environments. The global smart home market has 

exhibited progressive growth in the past few years and has attracted more and more attention from 

commercial parties. This leads to the emergence of the smart home ecosystem, which consists of various 

smart devices such as computers, locks, sensors, thermostats, wearables, and various home appliances.  

However, many studies in the technological cybersecurity domain have shown that IoT technologies come 

with their own vulnerabilities, which can be exploited by attackers to compromise smart home devices 

(e.g., to open garage doors for attackers) and cause damage to homeowners. This new dimension of 

threats brings an important opportunity for insurance companies to grow their cyber insurance businesses 

while helping mitigate the risks that are imposed on homeowners by these vulnerabilities.  

From an insurer’s perspective, state-of-the-art approaches are needed since cyber risks in the smart home 

ecosystem are little investigated and understood. The present project aims to fill this void. Specifically, we 

develop a novel and practical quantitative framework for modeling the cyber risks associated with the 

smart home ecosystem, with an emphasis on cyber insurance pricing. The framework consists of four 

components: (i) identifying vulnerability-incurred cyber risks; (ii) classifying cyber risks into business 

lines; (iii) modeling cyber risks; and (iv) determining insurance premiums and coverages. This project 

lays a sound practical groundwork for launching cyber insurance for the smart home ecosystem, which will 

provoke further in-depth investigation along this research line.   

This project enhances the current understanding of cyber risks in the smart home ecosystem from the 

insurance industry's perspective. In particular, the quantitative framework and pricing strategies developed 

in this project can be immediately adopted/adapted by actuaries to price the cyber risks for smart homes, a 

fast-growing insurance market.  
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Section 1: Introduction 

The omnipresence of IoT technology allows average households to transform into smart homes to provide 

more convenient, comfortable, and secure living environments. According to a report by Zion Market 

Research, the global smart home market is likely to reach US$137.9 billion by 2026, with a compound 

growth of slightly more than 1.4% from 2020 to 20261. This explains why the smart home ecosystem is 

attracting more and more attention from commercial parties such as energy suppliers, third-party software 

and hardware vendors, and insurance companies. 

Figure 1  

ILLUSTRATION OF THE COMPLEXITY AND HETEROGENEITY OF THE SMART HOME ECOSYSTEM. 

 
 

One feature of the smart home ecosystem is that the devices connected to smart homes are highly 

heterogeneous in their services, ranging from security, healthcare, convenience, and entertainment, to 

energy efficiency [1]. As illustrated in Figure 1, there are a variety of smart devices in the smart home 

ecosystem, including thermostats, TVs, computers, cameras, locks, sensors, and smart home appliances. 

These devices collect and exchange data with each other, allowing homeowners to use smart devices to 

seamlessly “merge” the physical world and the digital world associated with smart homes into a unified 

environment. In this ecosystem, the cloud server provides the platform that allows a user to interact with 

the smart devices at home via mobile applications; each smart device runs independently and 

communicates via a local mesh network (e.g., Zigbee) with a home gateway acting as the central node. 

Together, these illustrate the high complexity and heterogeneity of smart devices in smart home 

ecosystems. 

While the smart home ecosystem offers convenience and comfort to our daily lives, smart devices, like 

many other new technologies, come with many vulnerabilities that can be exploited by attackers to cause 

damage to homeowners, which leads to an unreliable and insecure ecosystem [2, 3]. For instance, an 

attacker can wage Denial-of-Service (DoS) attacks to disrupt the use of smart devices; an attacker can wage 

eavesdropping attacks (e.g., Man-in-the-Middle attack) to steal personal information or corrupt data; an 

attacker can exploit vulnerabilities in smart cameras for cyber extortions [4]. Indeed, the Avast Smart Home 

Security Report 2019, which is based on an extensive smart home market analysis, shows that 4.8% of 

 
1 https://www.zionmarketresearch.com/report/smart-home-market 
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smart homes have at least one device that is vulnerable to cyber attacks2. Notably, among these 

vulnerabilities, 69.2% are vulnerable because of weak credentials and 31.4% because of software 

vulnerabilities. 

The vulnerabilities such as those mentioned above lead to cyber risks, which represent opportunities for 

insurance companies to expand their insurance services to help smart homeowners in transferring their 

cyber risks. The status quo is that the current smart home insurance market mainly provides limited 

coverage for smart homeowners, which are typically treated as add-ons to standard home insurance 

policies. For instance, one major insurance company offers smart home coverage, including data breaches, 

computer and home systems attacks, cyber extortion, and online fraud, but the coverage limits top out at 

$50,000 with a $500 deductible; another major insurance company offers a personal cyber insurance add-

on to its standard home insurance policy by covering some cyber risks in the smart home ecosystem, 

including cyber-attacks and extortion, with limits up to $15,000. These examples show that the current 

smart home insurance market is still in the infancy stage, demanding effort and help from the actuarial 

community. 

The insurance coverage demand mentioned above has led to many studies assessing the risks associated 

with the smart home ecosystem. However, most if not all of these studies are from the perspectives of 

security, privacy, and users [1, 2, 3, 5, 6]. By contrast, the only study found on quantifying cyber risks in the 

smart home ecosystem from the insurance perspective is from Zhang et al, which studies cyber risks in a 

general IoT framework and discusses the associated cyber risks in a small home from a theoretical 

perspective [7]. 

This work aims to develop a practical quantitative framework for identifying, modeling, and pricing cyber 

risks in a smart home ecosystem. The present study is unique because of the following characteristics: 

• It considers insurers’ perspective. Cyber risks in the smart home ecosystem are studied from an 

insurer’s perspective, which prompts us to first identify vulnerability-incurred cyber risks in a 

smart home and then discuss the potential impacts of these cyber risks. The impacts allow us to 

classify the cyber risks into different lines of insurance risks. 

• It makes innovative technical contributions. We develop practical probabilistic approaches to 

pricing cyber risks in the smart home ecosystem. We conduct the following two types of analysis: 

(i) Conservative analysis, which assumes that any vulnerability in the smart home ecosystem will 

be exploited by the attackers during a policy period. This analysis is simple but practical but 

corresponds to the worst-case scenario (i.e., the upper bound for the probabilities that the 

vulnerabilities will be exploited, respectively). (ii) Bayesian Attack Graph (BAG) analysis [8], which 

leverages graphical models that represent the information about vulnerabilities and the 

interactions between the devices in the smart home ecosystem (i.e., the attack paths that can be 

leveraged to compromise the devices in the smart home ecosystem). Note that (ii) is finer grained 

than (i) but requires a strong security assessment team. 

• It is ready for real-world adoption. The present study is more practical and can be easily 

adopted/adapted by insurance companies to accommodate any relevant scenarios. This is 

evidenced by our exploration of pricing strategies. 

 
2 https://cdn2.hubspot.net/hubfs/486579/avast_smart_home_report_feb_2019.pdf 
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Section 2: A quantitative framework for studying the cyber risks in the 

smart home ecosystem 
For the smart home ecosystem, there are extensive studies in the literature on identifying cyber risks from 

different perspectives, including risk analysis [8, 9], security [2, 10], privacy [5], industry [6], and scenario-

based analysis [3]. However, there is only one prior study on modeling cyber risks in a smart home 

ecosystem from an insurer’s perspective and it provides limited discussion. The present study seeks to fill 

the void on research from an insurer’s perspective. In this study, we discuss a quantitative framework for 

modeling and pricing cyber risks in a smart home ecosystem. This framework consists of four components: 

1) Identifying vulnerability-incurred cyber risks; 2) Classifying cyber risks into business lines; 3) Modeling 

cyber risks; 4) Determining premiums and coverages. 

2.1 IDENTIFYING VULNERABILITY-INCURRED CYBER RISKS 

Because of the inherent complexity and heterogeneous structure, the smart home ecosystem has a large 

attack surface [9, 11]. From an insurer’s perspective, it is of utmost importance to identify the risks via a 

simple but efficient approach. For this purpose, we propose identifying the risk based on vulnerabilities in 

the smart home network. 

A common approach to assessing vulnerability is based primarily on the Common Vulnerability Scoring 

Systems (CVSS) [12]. The CVSS computes the severity of a vulnerability as a function of its characteristics, 

and the confidentiality, integrity, and availability impact on an information system. The base score of CVSS 

is the most commonly used component which produces a score ranging from 0 to 10, where higher scores 

represent high threat levels. Almost all known vulnerabilities are published on the National Vulnerability 

Database3. The vulnerability information is identified via the Common Vulnerabilities and Exposures (CVE), 

and each CVE includes the CVE identifier, description, and references discussing the vulnerability. However, 

it should be noted that the CVSS score does not reflect the probability that a vulnerability will be used to 

attack a network since only a very small proportion of vulnerabilities are exploited in practice4. It is 

necessary to convert the CVSS into the exploitation probability. Jacobs et al. [13] propose a data-driven 

framework for assessing the probability that a vulnerability will be exploited within a certain time period 

after public disclosure. This system is named the Exploit Prediction Scoring System (EPSS)5. They show that 

this system is easy to implement and provides satisfactory estimates of exploitation. 

The following steps can be performed to identify the cyber risks in a smart home ecosystem. 

1. Scan vulnerabilities. Typically, the vulnerability report generated by vulnerability scanners includes 

vulnerability dependency details and CVSS scores [14]. 

2. Create the vulnerability graph. The vulnerability graph abstracts the exploitation relationship 

among vulnerabilities which can be used for the attack analysis [8].  Based on the vulnerability 

details, the vulnerability graph can be created. 

3. Determine exploitation probabilities. The exploitation probabilities of vulnerabilities can be 

determined from the vulnerability graph based on vulnerability details and the EPSS. 

For illustration, assume that there are three vulnerabilities discovered in a smart home: CVE2021-21736, 

CVE-2018-3919, and CVE-2022-22667. The vulnerability graph can be created based on the attack scenario: 

the attacker exploits a vulnerability in a smartphone Operating System (𝑉1: CVE-2022-22667) over the 

 
3 https://nvd.nist.gov/vuln-metrics/cvss 
4 https://www.kennasecurity.com/resources/prioritization-to-prediction-report/ 
5 https://www.first.org/epss/model 
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wireless network and compromises the smartphone. This grants the attacker access to the smartphone 

Operating System, which allows the attacker to pivot into the smart home network to compromise the 

smart home hub by exploiting the vulnerability (𝑉3: CVE-2018-3919). Further, the attacker exploits the 

vulnerability (𝑉5: CVE-2021-21736) in the smart camera to gain control over it. The vulnerability graph can 

be represented via a path of two edges, namely 

𝑉1 →  𝑉3 →  𝑉5. 

The CVSS base scores for those vulnerabilities are 7.8 (𝑉1), 9.9 (𝑉3), and 7.2 (𝑉5). The EPSS probabilities 

are .02, .3, and .05, respectively. 

2.2 CLASSIFYING CYBER RISKS INTO BUSINESS LINES 

From the insurer’s perspective, the goal is to price the potential loss. It is possible that some vulnerabilities 

with high CVSS scores and EPSS probabilities only lead to negligible loss. Therefore, it is essential to 

understand the impacts of cyber-attacks and classify those risks into business lines. Based on the 

characteristics of the smart home ecosystem, we have identified the following risk categories: 

• Data breach (L1). The data breach risk refers to the exposure of personal private user data that 

can be collected from the smart home ecosystem. The private data includes daily activities, 

emotions, health conditions, voices, and videos. Data breaches can be caused by the exploitation 

of vulnerabilities in smart devices or by malware attacks. Data breach coverage pays for the 

attorney costs, IT professionals, and mitigation of damage caused by the private information leak. 

• Loss of use (L2). The loss-of-use risk refers to the data recovery, home applicants repair, and 

system restoration costs due to cyber attacks such as malware and Denial-of-Service (DoS) attacks. 

Coverage for this risk pays for those costs and removing a virus or reprogramming of desktops, 

laptops, smartphones, tablets, Wi-Fi routers, and other internet access points, such as smart home 

devices and security systems. 

• Ransomware (L3). Ransomware refers to that online criminal “lock” (via cryptographic techniques) 

smart devices such as computers/laptops/tablets, security systems, and/or thermostats to 

demand ransom. Ransomware coverage pays for the ransom upon the approval of the insurance 

company or professional assistance to resolve the ransomware event. 

• Cyber extortion (L4). Cyber extortion occurs when online criminals threaten to release sensitive 

personal data, activities, conversations, or videos for financial gain. Cyber extortion coverage 

reimburses individuals for payments they made under the duress of an extortion threat. 

• Online fraud (L5). Online frauds include the direct financial losses caused by cyber attacks, such as 

stolen account funds, unauthorized use of banking or credit cards, phishing schemes, and other 

types of fraud. Online fraud coverage pays for the direct financial loss incurred by these attacks. 

• Theft (L6). Theft refers to the loss incurred by cyber attacks against security systems. For instance, 

an attacker unlocks the smart lock and steals wealth from policyholders. The theft coverage 

reimburses the cost of repurchasing items and property loss.  

Figure 2 shows those risk categories from the perspectives of insurance companies based on the 

vulnerability graph. 

2.3 MODELING CYBER RISKS IN THE SMART HOME ECOSYSTEM 

It is ideal to patch all the vulnerabilities to mitigate risks. However, it is not always possible in practice (e.g., 

due to lack of manpower). Thus, assessing the risks of the vulnerability network is essential to optimize 



9 

 

 

Copyright © 2023 Society of Actuaries Research Institute 

resources and the effort required to protect the network. Analyzing the network risks in isolation offers a 

limited perspective on network security, given the complex interdependencies between vulnerabilities.  

Figure 2  

VARIOUS INSURANCE RISKS IN A SMART HOME ECOSYSTEM. 

 
 

Bayesian Attack Graphs (BAGs) [8, 15] provide a powerful framework to represent prior knowledge about 

vulnerabilities and network connectivity, depicting the paths of an attacker through the system by 

exploiting successive vulnerabilities. At a high level, BAGs are graphical models representing information 

about network vulnerabilities and their interactions, and different paths that an attacker can use to 

compromise a given objective. Along each attack path, vulnerabilities are exploited in sequence, meaning 

that each successful exploitation allows the attacker to acquire more privileges toward the target. 

Figure 3  

ILLUSTRATION OF ATTACK PATHS IN THE SMART HOME ECOSYSTEM. 
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Figure 3 illustrates various attack scenarios, three of which are described in more detail. 

• Attack scenario 1: This attack scenario is described in Section 2.1. The attack path is 𝑉1 →  𝑉3 →

 𝑉5. This attack can cause risks, including data breach (e.g., data stored in the smart hub) and 

cyber extortion (e.g., private activities captured by the camera). 

• Attack scenario 2: The attacker exploits a vulnerability in the smartphone Operating System (𝑉1: 

CVE-2022-22667) over the wireless network, and gains access to the smartphone. The attacker 

uses this access to compromise the smart home hub in the network by exploiting the vulnerability 

(𝑉3: CVE-2018-3919). Further, a smart sensor vulnerability (𝑉4: CVE-2021-39277) can be exploited, 

and a smart lock vulnerability (𝑉6: CVE-2019-12944) can be further exploited to compromise the 

lock. This attack path can be represented as a path of three edges, namely 𝑉1 →  𝑉3 →  𝑉4 →  𝑉6. 

This attack can cause risks, including data breach and property theft (e.g., unlocking the door). 

• Attack scenario 3: The attacker exploits a vulnerability in the laptop (𝑉7: CVE-2017-8759) over the 

wireless network, and remotely executes some malicious code. The attacker uses this access to 

exploit the vulnerability (𝑉5: CVE-2021-21736) in the smart camera to gain control over it. This 

attack can cause risks, including data breach and cyber extortion. 

Let 𝑉𝑗  denote the state that vulnerability 𝑗 is exploited (i.e., the corresponding smart home device is 

compromised or not), where 𝑉𝑗 = 1 means vulnerability 𝑗 is successfully exploited and 𝑉𝑗 = 0 the opposite, 

𝑗 =  1,2, … , 𝐽. Let Lk denote the total loss associated with type 𝑘 risk, which is determined by successfully 

exploiting vulnerabilities, 𝑘 =  1, … , 𝑀. Note that the joint probability of vulnerabilities can be represented 

via BAG [8] 

𝑃(𝑉1 =  𝑣1, … , 𝑉𝑁 =  𝑣𝑁) = ∏ 𝑃(𝑉𝑖 =  𝑣𝑖|𝐩𝐚𝑖)

𝑁

𝑖=1

 ,        𝑣𝑖  =  1,0, (1) 

where 𝑁 represents the total number of vulnerabilities, 𝐩𝐚𝑖  is the parent node sets of vulnerability node 𝑖 

(e.g., vulnerability node V5 in Figure 3 has the parent node set 𝐩𝐚5 = {𝑉3, 𝑉7} ), and 

𝑣𝑖 = {
1, the corresponding device is compromised,
0, the corresponding device is not compromised.

 

Note that for type 𝑘 loss, we have 

𝑃 (L𝑘 ≤ 𝑡𝑘) = ∑ 𝑃 (L𝑘  ≤  𝑡|𝐕 =  𝐯)𝑃(𝐕 =  𝐯)
𝑉

 

= ∑ 𝑃 (L𝑘  ≤ t|V = v) ∏ 𝑃(𝑉𝑖 = 𝑣𝑖|𝐩𝐚𝑖)

𝑁

𝑖=1
𝑉

, (2) 

where 𝑘 =  1, … , 𝑀, and v =  (𝑣1, … , 𝑣𝑁). The distribution of total loss (TL) can be represented by 

𝑃 (TL ≤  𝑡) = 𝑃 (∑ L𝑘

𝑀

𝑘=1

≤ 𝑡) 

= ∑ 𝑃(∑ 𝐿𝑘
𝑀
𝑘=1 ≤ 𝑡 |V = v) ∏ 𝑃(𝑉𝑖 = 𝑣𝑖|𝐩𝐚𝑖)

𝑁

𝑖=1𝐯

. (3) 

From the practical perspective, we study a special case by assuming that any vulnerability that can be 

exploited will be exploited independently by the attacker. It corresponds to the worst-case scenario, and 

the joint probability of vulnerabilities can be represented as 
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𝑃(𝑉1 =  𝑣1, … , 𝑉𝑁 =  𝑣𝑁) = ∏ 𝑃(𝑉𝑖 =  𝑣𝑖|𝐩𝐚𝑖)

𝑁

𝑖=1

 ,        𝑣𝑖  =  1,0, 

This approach is straightforward to implement in practice. However, it overestimates the risk since every 

vulnerability is assumed to be exploitable and hence, can be considered as a conservative case. For ease of 

reference, we name this Approach 1, and the BAG approach Approach 2. Please note that the key 

difference between Approach 1 and Approach 2 is that Approach 1 does not consider exploitable 

relationships among vulnerabilities while Approach 2 does. 

We also pay special attention to the dependence among large risks, i.e., tail dependence. The relevant 

concept is recalled as follows: Let 𝐹𝑋  and 𝐹𝑌 be the distribution of random variable 𝑋 and 𝑌 , then the tail 

dependence [16, 17] index 𝜒(𝑢) of 𝑋 and 𝑌 at the level 𝑢 is 

 𝜒(𝑢) = 𝑃(( 𝑌 > 𝐹𝑌
−1(𝑢)|𝑋 > 𝐹𝑋

−1(𝑢)). 

The sample version of 𝜒(𝑢), based on data {(𝑥𝑖 , 𝑦𝑖)|𝑖 =  1, … , 𝑛} is 

𝜒𝑛(𝑢) =
1

𝑛(1 − 𝑢)
∑ 𝐼{ 𝑥𝑖 >  𝑥[𝑛𝑢]:𝑛, 𝑦𝑖 >  𝑦[𝑛𝑢]:𝑛

𝑖≤𝑛

}, 

where 𝑥[𝑛𝑢]:𝑛  and 𝑦[𝑛𝑢]:𝑛  represent the [𝑛𝑢]th order statistics, respectively. 

In the following section, we discuss two scenarios. 

2.3.1 SCENARIO WITH FEWER VULNERABILITIES 

Assume that a smart home has only three vulnerabilities 𝑉1,𝑉3 and 𝑉5 as described in attack scenario 1. 

Table 1 displays the different types of loss caused by successfully exploited vulnerabilities. 

Table 1  

‘x’MEANS VULNERABILITY 𝑉𝑖  CAUSES LOSS 𝐿𝑗 , 𝑖 =  1,3,5, 𝑗 =  1, … ,5; ‘Score’ REPRESENTS THE CVSS 

SCORE; ‘Prob.’ REPRESENTS THE EPSS PROBABILITY. 

CVSS 𝐋𝟏 𝐋𝟐 𝐋𝟑 𝐋𝟒 𝐋𝟓 𝐋𝟔 Score Prob. 

CVE-2022-22667 (𝑉1) x    x  7.8 .02 

CVE-2018-3919 (𝑉3) x x     9.9 .30 

CVE-2021-21736 (𝑉5)  x  x   7.2 .05 

 

In the following, we discuss different loss distributions. 

Gamma loss distributions Let 𝑋𝑖,𝑗  be the type 𝑗 loss caused by 𝑉𝑖 , 𝑖 =  1,3,5; 𝑗 =  1, … ,5. Assume that 𝑋𝑖,𝑗 

follows a Gamma distribution with scale parameter 𝛽 = 1, and shape parameter 𝛼𝑖, and 

(𝛼1, 𝛼3, 𝛼5)  =  (5,1,2). 

This means that the different vulnerabilities result in various losses. For example, the data breach caused 

by 𝑉1 is severer than that by 𝑉3. It is further assumed that given the exploration status of vulnerabilities, the 

different types of losses are independent. We study the loss distribution under the two different 

approaches in the following. 
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Approach 1.  The probabilities of exploitation are independent, i.e., 

𝑃(𝑉1 = 𝑣1, 𝑉3 = 𝑣3, 𝑉5 = 𝑣5)  =  𝑃(𝑉1 = 𝑣1)𝑃(𝑉3 = 𝑣3)𝑃(𝑉5 = 𝑣5). 

The probabilities of exploration scenarios can be easily computed in Table 2. For example, 

𝑃(𝑉1 = 1, 𝑉3 = 0, 𝑉5 = 0) = .02(1 − .3)(1 − .05) = .0133. 

Table 2 displays different loss scenarios, where 𝑋𝑖,𝑗 = L𝑗(s𝑖) represents the type 𝑗 loss caused by scenario 

s𝑖, 𝑖 =  1, … ,8. Note that for scenarios s𝑖, 𝑖 =  1, … ,8, the loss is computed based on all the vulnerabilities 

in this scenario, i.e. 

𝑋5,𝑗  =
𝑑

 L𝑗(s2) + L𝑗(𝒔3),     𝑋6,𝑗   =
𝑑

 L𝑗(𝒔3) + L𝑗(s4), 

𝑋7,𝑗   =
𝑑

 L𝑗(s2) + L𝑗(𝒔4),     𝑋8,𝑗   =
𝑑

 L𝑗(s2) + L𝑗(𝒔3) + L𝑗(s4), 

where ‘=
𝑑

’ represents both sides are equal in distribution. For example, we have 

𝑋5,1  =
𝑑

𝑋2,1 + 𝑋3,1 

𝑋5,2  =
𝑑

𝑋3,2,     𝑋5,5  =
𝑑

𝑋2,5. 

Since 𝑋𝑖,𝑗’s are independent Gamma random variables, 𝑖 =  1, … ,4, and 𝑗 =  1, … ,5, 𝑋𝑘,𝑗’s also Gamma 

distributions, 𝑘 =  5, . . . ,8. The distributions of losses (DLs) are shown in Table 2. 

Table 2  

VARIOUS LOSS SCENARIOS UNDER DIFFERENT SCENARIOS OF (𝑉1, 𝑉3, 𝑉5). ‘Prob.’ REPRESENTS THE 

SCENARIO PROBABILITY, AND ‘DL’ PRESENTS THE DISTRIBUTION OF LOSS. 

Scenario (𝑽𝟏, 𝑽𝟑, 𝑽𝟓) Prob. 𝐋𝟏 𝐋𝟐 𝐋𝟒 𝐋𝟓 𝐃𝐋𝟏 𝐃𝐋𝟐 𝐃𝐋𝟒 𝐃𝐋𝟓 

1 (0,0,0) .6517 0 0 0 0 0 0 0 0 

2 (1,0,0) .0133 𝑋2,1 0 0 𝑋2,5 Γ(5,1) 0 0 Γ(5,1) 

3 (0,1,0) .2793 𝑋3,1 𝑋3,2 0 0 Γ(1,1) Γ(1,1) 0 0 

4 (0,0,1) .0343 0 𝑋4,2 𝑋4,4 0 0 Γ(2,1) Γ(2,1) 0 

5 (1,1,0) .0057 𝑋5,1 𝑋5,2 0 𝑋5,5 Γ(6,1) Γ(1,1) 0 Γ(5,1) 

6 (0,1,1) .0147 𝑋6,1 𝑋6,2 𝑋6,4 0 Γ(1,1) Γ(3,1) Γ(2,1) 0 

7 (1,0,1) .0007 𝑋7,1 𝑋7,2 𝑋7,4 𝑋7,5 Γ(5,1) Γ(2,1) Γ(2,1) Γ(5,1) 

8 (1,1,1) .0003 𝑋8,1 𝑋8,2 𝑋8,4 𝑋8,5 Γ(6,1) Γ(3,1) Γ(2,1) Γ(5,1) 

 

Next, we compute the distribution for each business line. Since we assume that the scenarios are 

independent, it holds that 

𝑃(L𝑗 ≤ 𝑡𝑗) = ∑ (L𝑗 ≤ 𝑡𝑗|V = v)𝑃(v)V  . (4) 

For instance, we have 
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𝑃(L1  ≤  𝑡1) = .6517 +  .0133 ·  𝐹5(𝑡1) + .2793 ·  𝐹1(𝑡1) + .0343 +  .0057 ·  𝐹6(𝑡1) +  .0147 

·  𝐹1(𝑡1) + .0007𝐹5(𝑡1) +  .0003𝐹6(𝑡1) 

= .686 + .014 · 𝐹5(𝑡1) + .294 · 𝐹1(𝑡1) + .006 · 𝐹6(𝑡1), 

where 𝐹𝛼(·)  ∼  𝛤(𝛼, 1) represents a Gamma distribution with shape parameter 𝛼 and scale parameter 1. 

Similarly, it holds that 

𝑃(L2  ≤  𝑡2) = .665 +  .285𝐹1(𝑡2)  +  .035𝐹2(𝑡2)  +  .015𝐹3(𝑡2), 

𝑃(L4  ≤  𝑡4) = .95 + .05𝐹2(𝑡4), 

𝑃(L5  ≤  𝑡5) = .98 + .02𝐹5(𝑡5). 

For the total loss TL = L1  +  L2  +  L4  +  L5, we have 

= 𝑃(𝐿1  +  𝐿2  +  𝐿4  +  𝐿5  ≤  𝑡) 

= ∑ L1  +  L2  +  L4  +  L5  ≤  𝑡|V =  v) ∏ 𝑃(v)

𝐕V

 

= .6517 + .0133 ·  𝐹10(𝑡) +  .2793 ·  𝐹2(𝑡) +  .0343 ·  𝐹4(𝑡) 

+.0057 · 𝐹12(𝑡) + .0147 · 𝐹6(𝑡) + .0007𝐹14(𝑡) + .0003𝐹16(𝑡). (5) 

It should be noted that although we assume that given the attack exploration scenario, (L𝑖|𝐯)’s are 

independent, L𝑖’s are not independent because of the same vulnerabilities. It is further confirmed in the 

following discussion. 

• Simulation. We perform a simulation study to validate the loss distributions. The simulation 

algorithm is presented in Algorithm 1. In our case, we have vulnerabilities (𝑉1, 𝑉3, 𝑉5), and the 

exploration probabilities 

(𝑒1, 𝑒3, 𝑒5) =  (𝑝1, 𝑝3, 𝑝5) =  (. 02, .3, .05). 

The number of simulations is 𝑅 = 100,000. 

Algorithm 1: Loss simulation in a smart home ecosystem. 

INPUT: Vulnerabilities (𝑉1, … , 𝑉𝑁); EPSS probabilities (𝑝1, … , 𝑝𝑁); Loss distributions of 𝑋𝑖 ,js; Number of 
simulations 𝑅. 

OUTPUT: Loss distributions. 

1 Draw the BAG based on vulnerabilities (𝑉1, … , 𝑉𝑁); 

2 Determine the exploitation probabilities (𝑒1, … , 𝑒𝑁) based on EPSS probabilities (𝑝1 , … , 𝑝𝑁) and the BAG; 
3 for 𝑘 =  1 to 𝑅 do 

4 Generate Bernoulli vector (𝑣1, … , 𝑣𝑁) based on (𝑒1, … , 𝑒𝑁) ; 

5 Determine business lines that are impacted by each vulnerability 𝑉𝑖  with 𝑣𝑖 = 1; 

6 Randomly generate losses 𝑥𝑖,𝑗’s from their corresponding distributions for those impacted business 

lines; 

7 end 

8 Record losses for each business 𝐿𝑗 , 𝑗 = 1, … , 𝑀. 

Figures 4(a), 4(b),4(c), and 4(d) show the distributions of losses based on Eq.(4) (black color) and 

the simulation (red color) for L1, L2, L4, and L5, respectively. We observe that the simulated 

results coincide with theoretical results very well. 
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Figure 5(a) displays the theoretical distribution of the total loss based on Eq.(5) (black color) and 

the simulated distribution of the total loss (red color). Again, we observe that they match very 

well. Figure 5(b) shows all the losses together for comparison. It is seen that L4 and L5 are more 

likely to have small values since they are impacted by 𝑉5 and 𝑉1, respectively, which have low 

exploit probabilities. Because 𝑉1 is more difficult to exploit,  L5 is more likely to have a small value 

than L4. L1 and L2 are more likely to be large values because of the high exploit probability of 𝑉3. 

Table 3 displays the summary statistics of different types of losses and the total loss based on 

simulation. It is seen that the 95th percentiles of L4 and L5 are both 0s which fits the previous 

conclusion. 

Figure 4  

SIMULATED DISTRIBUTIONS (COLORED) AND THEORETICAL DISTRIBUTIONS (BLACK). 

      

(a) 𝐿1                                                                                                                                                       (b) 𝐿2 

      

(c) 𝐿4                                                                                                                                                       (d) 𝐿5 
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• Dependence among losses. It is interesting to study the dependence among risks of different 

business lines. Although it is assumed that the exploitations are independent, the dependence can 

be caused by the same vulnerability. Table 4 displays Kendall’s tau correlation coefficients 

between the losses of different business lines based on simulation. It is seen that L1 and L2 have a 

large correlation .691. This can be explained by vulnerability 𝑉3 that affects both business lines and 

has a large exploit probability .3. L4 and L5 are caused by different vulnerabilities; therefore, the 

correlation is 0. The other small correlations in the table can be explained similarly. In terms of the 

correlation between each business line and total loss, it is observed that 𝐿1  and 𝐿2  have large 

correlations. This can be explained by the fact that both business lines have large risks. 

Figure 5  

THE SIMULATED DISTRIBUTION (COLORED) OF TOTAL LOSS AND THE THEORETICAL DISTRIBUTION (BLACK) 

OF TOTAL LOSS. 

      

(a) Distributions of total loss                                        (b) Simulated distributions of all losses  

Table 3  

SUMMARY STATISTICS OF DIFFERENT TYPES OF LOSSES AND THE TOTAL LOSS BASED ON SIMULATION, 

WHERE ‘SD’ REPRESENTS STANDARD DEVIATION. 

 Min 𝑸𝟐𝟓 Median 𝑸𝟕𝟓 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗 𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

L1 .000 .000 .000 .241 1.293 2.261 5.429 6.936 9.650 16.624 .401 1.061 

L2 .000 .000 .000 .338 1.429 2.245 4.234 5.000 7.042 13.168 .397 .892 

L4 .000 .000 .000 .000 .000 .000 2.926 3.855 5.792 11.753 .097 .529 

L5 .000 .000 .000 .000 .000 .000 4.592 6.213 9.304 15.595 .099 .768 

TL .000 .000 .000 1.208 3.205 4.900 1.844 13.191 17.473 27.579 .995 2.142 
 

Table 4 also shows the tail indexes 𝜒𝑢s with 𝑢 =  .999 between different losses. It is interesting to 

see that 𝐿1  and 𝐿5  have the largest tail dependence .060 although 𝐿1  and 𝐿2  have the largest 

Kendall’s tau correlation. This can be explained by the fact that 𝑉1 affects both 𝐿1  and 𝐿5, which 
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can result in large losses. This can also be seen in Table 3 that both 𝐿1  and 𝐿5  have large values of 

high quantiles (namely, 𝑄99.9). 

We draw the following insight based on the previous discussion: 

Insight 1. It is practical to assume that any vulnerability that can be exploited will be exploited 

independently by the attacker in a smart home system. However, there exists dependence among different 

business risks if a common vulnerability exists, and the tail dependence between business lines can also 

exist. 

Table 4  

KENDALL’S TAU CORRELATION COEFFICIENTS AND TAIL INDEXES 𝜒(.999)S BETWEEN DIFFERENT LOSSES. 

  Kendall’s tau  Tail index χ(.999) 

 𝐋𝟐 𝐋𝟒 𝐋𝟓 TL 𝐋𝟐 𝐋𝟒 𝐋𝟓 TL 

L1 .691 -.007 .266 .817 .000 .000 .060 .420 

L2  .352 .002 .861  .030 .000 .040 

L4   .000 .352   .000 .020 

L5    .258    .380 

 

Approach 2 In this case, the exploitations of vulnerabilities are not independent. Based on the BAG: 𝑉1 →

 𝑉3 →  𝑉5, the joint distribution of (𝑉1, 𝑉3, 𝑉5) can be represented as  

𝑃(𝑉1, 𝑉3, 𝑉5)  =  𝑃(𝑉1)𝑃(𝑉3|𝑉1)𝑃(𝑉5|𝑉3). 

For comparison, we assume that 𝑃(𝑉1 = 1) = .02 , 𝑃(𝑉3 = 1|𝑉1 = 1) = .3 , and 𝑃(𝑉5 = 1|𝑉3 = 1) = .05. 

The possible scenarios are less compared to Table 2, i.e., 1, 2, 5, and 8. Table 5 shows the probabilities of 

different scenarios, and also the loss distributions.  

Table 5 

VARIOUS LOSS SCENARIOS UNDER DIFFERENT SCENARIOS OF (𝑉1, 𝑉3, 𝑉5). ‘Prob.’ REPRESENTS THE 

SCENARIO PROBABILITY, AND ‘DL’ PRESENTS THE DISTRIBUTION OF LOSS. 

Scenario (V1,V3,V5) Prob. L1 L2 L4 L5 DL1 DL2 DL4 DL5 

1 (0,0,0) .980 0 0 0 0 0 0 0 0 

2 (1,0,0) .014 𝑋2,1 0 0 𝑋2,5 Γ(5,1) 0 0 Γ(5,1) 

5 (1,1,0) .0057 𝑋5,1 𝑋5,2 0 𝑋5,5 Γ(6,1) Γ(1,1) 0 Γ(5,1) 

8 (1,1,1) .0003 𝑋8,1 𝑋8,2 𝑋8,4 𝑋8,5 Γ(6,1) Γ(3,1) Γ(2,1) Γ(5,1) 

 

We compute the distribution for each business line based on Eq.(2). For example, we have 

= 𝑃(L1  ≤  𝑡1) 

= ∑ 𝑃(L1  ≤  𝑡1|𝑉1  =  𝑣1, 𝑉3  =  𝑣3, 𝑉5  =  𝑣5)𝑃(𝑉1 =  𝑣1)𝑃(𝑉3  =  𝑣3|𝑉1  =  𝑣1)𝑃(𝑉5  =  𝑣5|𝑉3  =  𝑣3)
V

  

= .98 +  .014 ·  𝐹5(𝑡1)  +  .006 ·  𝐹6(𝑡1), 

Similarly, it holds that 

𝑃(L2  ≤  𝑡2) = .994 +  .0057𝐹1(𝑡2)  + .0003𝐹3(𝑡2), 
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𝑃(L4  ≤  𝑡4) = .9997 +  .0003𝐹2(𝑡4), 

𝑃(L5  ≤  𝑡5) = .98 +  .02𝐹5(𝑡5). 

The distribution of total loss can be presented as 

= 𝑃(L1  +  L2  +  L4  +  L5  ≤  𝑡) 

= ∑ 𝑃(L1  +  L2  +  L4 +  L5  ≤  𝑡|V =  v)𝑃(𝑉1 =  𝑣1)𝑃(𝑉3  =  𝑣3|𝑉1  =  𝑣1)𝑃(𝑉5  =  𝑣5|𝑉3  =  𝑣3)

V

 

= .98 + .014 · 𝐹10(𝑡) + .0057 · 𝐹12(𝑡) + .0003𝐹16(𝑡). 

𝑎 (6) 

• Simulation. We also perform a simulation study to verify the loss distributions using Algorithm 1. In 

our case, the exploitation probabilities are 

(𝑒1, 𝑒3, 𝑒5) =  (. 02, .3, .05). 

The number of simulations is also set to be 𝑅 = 10,000. 

Figure 6  

SIMULATED DISTRIBUTIONS (COLORED) AND THEORETICAL DISTRIBUTIONS (BLACK). 

      

(a) 𝐿1                                                                                                                                                      (b) 𝐿2 
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(c) 𝐿4                                                                                                                                                      (d) 𝐿5 

The distributions of different losses based on the BAG approach are displayed in Figure 6. It can be 

observed that the simulated distributions (black) coincide with the theoretical results (red).  

Figure 7(a) displays the theoretical distribution of the total loss based on Eq.(6) (black color) and 

the simulated distribution of the total loss (red color). We again observe that they match very 

well. Figure 7(b) shows all the losses together for comparison. L4 is more likely to have smaller 

values than L2. This can be explained by the fact that 𝑉5, which leads to L4, is the most difficult 

vulnerability to exploit since it can only be exploited after both 𝑉1 and 𝑉3 are successfully 

exploited. Since 𝑉3 is relatively easier to exploit than 𝑉5, 𝐿2 affected by 𝑉3 and 𝑉5, it is more likely 

to have larger values compared to L4. Compared with L4 and L2, L1 and L5 are less likely to have 

small values since 𝑉1 and 𝑉3 are exploited first. 

Figure 7  

THE SIMULATED DISTRIBUTION (COLORED) OF TOTAL LOSS AND THE THEORETICAL DISTRIBUTION (BLACK) 

OF TOTAL LOSS. 

      

(a) Distributions of total loss                                        (b) Simulated distributions of all losses  
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Table 6 displays the summary statistics of different types of losses and the total loss. Compared to 

Table 3, it is seen that L1 and L2, and TL are more likely to have small values. The means of losses 

are less than the corresponding ones by Approach 1. A similar conclusion can also be drawn for 

the standard deviations. It should also be mentioned that the large losses of TL (namely larger 

than 𝑄99) for both approaches are close. This can be explained by the fact that L1 and L5 both 

have 𝑉1 that has a large impact on the total loss. 

• Dependence among losses. Table 7 displays Kendall’s tau correlation coefficients. It is observed L1 

and L5 has the largest correlation .991, which is different from that in Table 4. This is mainly 

because 𝑉1, which needs to be exploited first affects both L1 and L5. It is interesting to see that L2 

and L5 have a large correlation .551 although they do not have a shared vulnerability. This strong 

dependence is caused by the chain relation in the BAG. We also observe that L1 and L5 are strongly 

correlated with TL as they are related to 𝑉1. Since 𝑉5 is the last to exploit, this results in less 

dependence of L4  on TL. 

The tail indexes 𝜒𝑢s with 𝑢 =  .999 between different losses are also shown in Table 7. We again 

observe that L1 and L5 have the largest tail dependence, and both have large tail dependence with 

the total loss. 

Table 6 

SUMMARY STATISTICS OF DIFFERENT TYPES OF LOSSES AND THE TOTAL LOSS BASED ON SIMULATION, 

WHERE ‘SD’ REPRESENTS STANDARD DEVIATION. 

 Min 𝑸𝟐𝟓  Median 𝑸𝟕𝟓  𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗 𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

L1 .000 .000 .000 .000 .000 .000 4.844 6.487 9.314 17.176 .099 .780 

L2 .000 .000 .000 .000 .000 .000 .000 .144 1.811 7.652 .006 .113 

L4 .000 .000 .000 .000 .000 .000 .000 .000 .000 4.738 .001 .037 

L5 .000 .000 .000 .000 .000 .000 4.463 6.098 9.011 18.827 .093 .737 

TL .000 .000 .000 .000 .000 .000 9.912 12.501 16.440 27.260 .198 1.505 

 

Table 7 

KENDALL’S TAU CORRELATION COEFFICIENTS AND TAIL INDEXES 𝜒(.999)S BETWEEN DIFFERENT LOSSES. 

 Kendall’s tau  Tail index χ(.999) 

 𝐋𝟐 𝐋𝟒 𝐋𝟓 TL 𝐋𝟐 𝐋𝟒 𝐋𝟓 TL 

L1 .552 .123 .991 .996 .040 .010 .060 .420 

L2  .223 .551 .554  .019 .000 .017 

L4   .123 .124   .020 .012 

L5    .995    .350 

 

Insight 2. The BAG has a significant impact on the loss distributions and tail dependence. It is recommended 

to use the BAG approach to assessing the risks. Approach 1 can be useful for the tail risk assessment of total 

loss if the total loss is mainly affected by some risks with vulnerabilities that can be easily exploited. 

General loss distributions Now, we study the impacts of different loss distributions. Assume that 

L1, L2, L4, L5 have different distributions: 

L1  ∼  Γ(𝛼1𝑉1  +  𝛼3𝑉3, 𝛽), (7) 
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L2  ∼  Lognormal (𝜇3V3 + 𝜇5V5, σ2 ), (8) 

L4  ∼  exp(𝜆5𝑉5), L5 ∼  exp(𝜆1𝑉1). (9) 

Let (𝛼1, 𝛼3, 𝛽)  =  (5,1,1), (𝜇3, 𝜇5, 𝜎)  =  (1,2,1), and (𝜆1, 𝜆5)  =  (.2, .5). Under this setting, L2 has a 

heavy tail distribution that can lead to a significant loss. We perform a simulation study based on Algorithm 

1 by using the above loss distributions, and the other settings are kept the same. 

Table 8 shows the summary statistics of losses of each business line and TL. It is seen that 𝐿2  has 

significantly larger values compared to the others for both Approach 1 and Approach 2. 

Further, the 𝑄99  of L2 by Approach 1 is much larger than that by Approach 2 (31.027 vs 0). This is because 

L2 having vulnerabilities 𝑉3  and 𝑉5 can only be exploited after 𝑉1 is successfully exploited for Approach 2. 

Since the exploitation probability for 𝑉1 is small (.02), this leads to the small values in Approach 2. Similarly, 

we observe that the total loss of Approach 2 is also much smaller. 

Table 8 

SUMMARY STATISTICS OF SIMULATED LOSSES BASED ON APPROACH 1 AND APPROACH 2. 

 Min 𝑸𝟐𝟓 Median 𝑸𝟕𝟓 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗 𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

 Approach 1 

L1 .000 .000 .000 .243 1.310 2.255 5.398 6.884 9.657 17.148 .403 1.056 

L2 .000 .000 .000 1.569 5.791 1.526 31.027 45.978 101.570 587.541 2.223 8.319 

L4 .000 .000 .000 .000 .000 .046 3.241 4.542 7.780 15.023 .100 .619 

L5 .000 .000 .000 .000 .000 .000 3.463 7.119 14.583 41.677 .102 1.001 

TL .000 .000 .000 2.821 7.908 13.200 33.451 48.243 103.804 588.319 2.828 8.848 

 Approach 2 

L1 .000 .000 .000 .000 .000 .000 4.934 6.731 9.374 18.485 .105 .811 

L2 .000 .000 .000 .000 .000 .000 .000 .968 7.696 328.126 .036 1.388 

L4 .000 .000 .000 .000 .000 .000 .000 .000 .000 8.852 .000 .042 

L5 .000 .000 .000 .000 .000 .000 3.315 6.841 14.932 33.404 .099 .993 

TL .000 .000 .000 .000 .000 .000 1.197 14.825 24.618 334.562 .240 2.319 

 

Table 9 shows Kendall’s tau correlation coefficients and tail indexes. We again observe that L1 and L2 have 

the largest Kendall’s tau correlation (.685) for Approach 1, and L1 and L5 have the largest Kendall’s tau 

correlation (.990) for Approach 2. For the tail dependence, it is seen that L2 dominates the tail dependence 

with the total loss for Approach 1, and the others are negligible. This is because the tail loss of L1 is much 

larger than the others. However, it is not true for Approach 2 since we also observe that L5  has a large tail 

dependence with the total loss. This is because that i) 𝑉1 is the first vulnerability to be exploited which 

determines L5; ii) Once 𝑉1  is exploited, L5 with an exponential distribution with a rate .2 that can produce a 

relatively large value (e.g., 𝑄99.9  =  14.932). 
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Table 9 

KENDALL’S TAU CORRELATION COEFFICIENTS AND TAIL INDEXES 𝜒(.999)S BETWEEN DIFFERENT LOSSES. 

 𝐋𝟐 𝐋𝟒 𝐋𝟓 TL 𝐋𝟐 𝐋𝟒 𝐋𝟓 TL 

 Kendall’s tau 

 Approach 1 Approach 2 

L1 .685 0 .269 .764 .542 .104 .990 .993 

L2  .366 -.001 .919  .193 .540 .545 

L4   -.002 .362   .104 .106 

L5    .225    .995 

 Tail index χ(.999) 

L1 .000 .000 .050 .000 .050 .020 .030 .090 

L2  .010 .000 .990  .019 .007 .510 

L4   .000 .010   .000 .016 

L5    .000    .520 

We draw the following insight based on the discussion: 

Insight 3. A business line with heavy tail distribution dominates the total loss. 

2.3.2 SCENARIO WITH MORE VULNERABILITIES 

We consider the scenario with more vulnerabilities in Figure 3. Table 10 shows the impacts of each 

vulnerability. For simplicity, we assume that the outside exploitation probability for 𝑉1, 𝑉2, 𝑉7 is .3, and the 

inside exploration is .2. The BAG is displayed in Figure 8 according to vulnerabilities.  

Table 10 

‘X’MEANS VULNERABILITY 𝑉𝑖  CAUSES LOSS 𝐿𝑗 , 𝑖 =  1, … ,7, 𝑗 =  1, … ,6; 

CVSS 𝑳𝟏 𝑳𝟐 𝑳𝟑 𝑳𝟒 𝑳𝟓 𝑳𝟔 

CVE-2022-22667 (𝑉1) x    x  

CVE-2021-27943 (𝑉2) x      

CVE-2018-3919 (𝑉3) x x     

CVE-2021-39277(𝑉4) x      

CVE-2021-21736 (𝑉5)  x  x   

CVE-2019-12944 (𝑉6)      x 

CVE-2017-8759 (𝑉7) x  x    
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Figure 8 

BAG IN THE SMART HOME ECOSYSTEM. 

 
 

For the loss distributions, we assume that L1 and L2 follow exponential distributions, i.e., L1  ∼  exp(𝜆1), 

and L2  ∼  exp(𝜆2), where 

𝜆1  = ∑ 𝐼(𝑉𝑖)

𝑖∈ℒ𝐴

,     𝜆2  = ∑ 𝐼(𝑉𝑗)

𝑗∈ℒ𝐵

 

and ℒ𝐴 = {1,2,3,4,7}, and ℒ𝐵 = {3,5}. L3 and L4 follow a lognormal distribution, i.e., Lognorm(𝜇, 𝜎) , 

where (𝜇, 𝜎)  =  (1,1). 𝐿5  and 𝐿6  follow a Gamma distribution, i.e., 𝛤(𝛼, 𝛽), where (𝛼, 𝛽)  =  (1,1).  

The joint probabilities of vulnerabilities can be obtained from Figure 8, 

𝑃(V = v) = 𝑃(𝑉1  =  𝑣1)𝑃(𝑉2  =  𝑣2)𝑃(𝑉7  =  𝑣7) 

 · 𝑃(𝑉3  =  𝑣3|𝑉2  =  𝑣2, 𝑉1  =  𝑣1)𝑃(𝑉5  =  𝑣5|𝑉3  =  𝑣3, 𝑉7  =  𝑣7) 

· 𝑃(𝑉4  =  𝑣4|𝑉3  =  𝑣3)𝑃(𝑉6  =  𝑣6|𝑉4  =  𝑣4, 𝑉7  =  𝑣7). 

Note that the exploitation probability of 𝑉𝑗  can be represented as 

𝑒𝑗 = 𝑃(𝑉𝑗 = 1|𝐩𝐚𝑗) = {

0, ∀ 𝑉𝑖 ∈  𝐩𝐚𝑗, 𝑉𝑖 = 0;

1 − ∏ (1 − 𝑒𝑖𝑗)

𝑉𝑖∈ 𝐩𝐚𝑗,𝑉𝑖=1

, Otherwise , 

𝑑𝑑 (10) 

where 𝑒𝑖𝑗  =  𝑃(𝑉𝑗  =  1|𝑉𝑖  =  1). For example, given 𝑉2  =  1 and 𝑉3  =  1, we have 

𝑒3  =  𝑃(𝑉3  =  1|𝑉2  =  1, 𝑉1  =  1)  =  1 −  (1 − 𝑒23)(1 − 𝑒13), 

where 𝑒23  =  𝑃(𝑉3  =  1|𝑉2  =  1), and 𝑒13  =  𝑃(𝑉3  =  1|𝑉1  =  1). Since we have 7 vulnerabilities in the 

network, the total number of vulnerability scenarios is 27, i.e., 1286. Certainly, some of the scenarios have 0 

 
6 R script is available upon request to compute each scenario’s probability. 
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probabilities due to the BAG. For example, Table 11 presents 5 scenarios with probabilities computed 

based on Eq. (10). It is seen that scenarios 3 and 5 both have probabilities of 0s. 

Table 11 

‘Prob. ’ REPRESENTS THE JOINT PROBABILITIES OF VULNERABILITIES IN DIFFERENT SCENARIOS. 

Scenario 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽𝟒 𝑽𝟓 𝑽𝟔 𝑽𝟕 Prob. 

1 0 0 0 0 0 0 0 .343 

2 0 0 0 0 0 0 1 .094 

3 0 0 0 0 0 1 0 .000 

4 0 0 0 0 0 1 1 .024 

5 0 0 0 0 1 0 0 .000 

 

Algorithm 1 is used to simulate the losses, where the exploit probability 𝑒𝑗  is computed based on Eq. 

(10), 𝑗 =  1, … ,7. The number of simulations is set to be 𝑅= 10,000. Table 12 displays the summary 

statistics of losses based on the simulation. It is seen that L3 has the largest mean 1.363 and large values of 

high quantiles. This is because L3 depends only on 𝑉7 that has a large probability of being exploited from 

the outside, and further, it follows a lognormal distribution. Although L4 also follows the same lognormal 

distribution, it has less probability of being exploited, as shown in the BAG. Therefore, L4 has a smaller loss 

than L3. Similar conclusions can be drawn for the other business lines. 

Table 13 displays Kendall’s tau correlations. It is seen that L1 has small correlations with L4 and L6 since 

they do not have a common vulnerability; L1 has common vulnerabilities with L3(𝑉7) and L5 (𝑉1), and they 

have relatively large correlations since both vulnerabilities can be directly exploited from the outside. 

Although L1 has a common (𝑉3) with L2, it has a relatively small correlation since 𝑉3 cannot be exploited 

directly. 

Table 12 

SUMMARY STATISTICS OF DIFFERENT TYPES OF LOSSES AND THE TOTAL LOSS BASED ON THE 

SIMULATION. 

 Min 𝑸𝟐𝟓 Median 𝑸𝟕𝟓 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗 𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

L1 .000 .000 .171 .671 1.432 2.041 3.512 4.137 5.627 8.029 .492 .765 

L2 .000 .000 .000 .000 .472 1.149 2.678 3.276 4.667 7.430 .158 .522 

L3 .000 .000 .000 1.038 4.199 7.284 17.169 23.212 39.256 78.983 1.363 3.839 

L4 .000 .000 .000 .000 .000 1.959 8.299 12.209 22.344 52.349 .353 1.893 

L5 .000 .000 .000 .180 1.102 1.844 3.350 4.066 5.629 7.693 .302 .715 

L6 .000 .000 .000 .000 .000 .235 1.830 2.594 4.527 9.025 .064 .369 

TL .000 .000 1.060 3.383 7.289 11.169 22.742 28.717 47.767 79.752 2.732 4.867 
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The other correlations can be interpreted similarly. For the tail dependence, it is seen that the tail 

dependence between different business lines is small. L3 and L4 have significant tail dependence with the 

total loss. This is mainly due to the lognormal loss, which coincides with the observation from Table 12. 

Table 13 

KENDALL’S TAU CORRELATION COEFFICIENTS AND TAIL INDEXES 𝜒(.99)S BETWEEN DIFFERENT LOSSES. 

  Kendall’s tau  

 𝑳𝟐 𝑳𝟑 𝑳𝟒 𝑳𝟓 𝑳𝟔 TL 

L1 .137 .290 .127 .259 .120 .592 

L2  .184 .605 .200 .089 .355 

L3   .296 .010 .350 .620 

L4    .068 .112 .348 

L5     .011 .357 

L6      .268 

  Tail index χ(.99)  

L1 0 0 .040 .010 0 .020 

L2  .020 .060 .020 .020 .050 

L3   .010 .010 .030 .660 

L4    .030 .000 .330 

L5     .010 .010 

L6      .020 

 

Section 3: Systemic risk 

In this section, we study a particular kind of risk, namely, systemic risk, in a smart home ecosystem which 

occurs when common vulnerabilities exist in many smart home networks. If an attacker successfully 

exploits the common vulnerabilities, this can cause catastrophic financial loss for the insurer. For instance, 

in 2017, the WannaCry ransomware attack targeted the computers running the Microsoft Windows 

Operating System by locking data and demanding ransom payments in the Bitcoin cryptocurrency. It was 

estimated that more than 200,000 computers were affected with a financial loss of up to billions of dollars 

[18]. The infamous ScarePackage ransomware attack reached over 900,000 Android cell phone users in just 

30 days. If the user wanted to regain control of the device, they had to pay the criminal several hundred 

dollars in MoneyPak voucher(s). 

Assume there are 𝑆 smart homes in an insurance portfolio with common vulnerabilities 𝑉1, … , 𝑉𝑚, and 

those vulnerabilities can cause a systemic risk. We assume that those vulnerabilities can be independently 

exploited from the outside. In the following section, we discuss two scenarios of systemic risks. 

3.1 RANSOMWARE 

A ransomware attack is possible in a smart home ecosystem. For example, the hacker can hack the smart 

lock to demand ransomware to unlock the door, or a smart thermostat can be hacked and display a 

message to pay a ransom. Since the ransomware attack typically demands the same amount of money for 

the systemic risk, the distribution of the total loss can be represented as 
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𝑃(𝑆𝐿3  ≤  𝑡) = ∑ 𝑃(𝐿3 ≤ 𝑡/𝑠| V=v)

V

 ∏ 𝑃(𝑉𝑖 = 𝑣𝑖)

𝑚

𝑖=1

 . 

This scenario becomes a single-line risk in a smart home, which can be analyzed similarly to those in Section 

2.3.1. Note that the loss is enlarged 𝑆 times compared to the loss in a single smart home in this scenario. 

3.2 OTHER ATTACKS 

We assume that once a common vulnerability is successfully exploited in one smart home, the other smart 

homes are subject to the same risk, and the same type of losses are independent and identically 

distributed. Then, the total loss of line 𝑖 can be represented as 

 𝑃(𝐿𝑖
1 + 𝐿𝑖

2 + ⋯ + 𝐿𝑖
𝑆 ≤  𝑡1) = ∑ 𝑃(𝐿𝑖

1 + 𝐿𝑖
2 + ⋯ + 𝐿𝑖

𝑆 ≤  𝑡1|𝐕 = 𝐯)

V

  ∏ 𝑃(𝑉𝑖 = 𝑣𝑖)

𝑚

𝑖=1

, 

where 𝐿𝑖
𝑗

 represents the loss of line 𝑖 in smart home 𝑗, 𝑗 =  1, … , 𝑆. 

For illustration, we consider the scenario in Section 2.3.1, i.e., assuming that 𝑉1, 𝑉3, 𝑉5  are common 

vulnerabilities. The loss distributions are the same as those in Section 2.3.1, and 𝑆 =  100. 

Table 14 displays summary statistics of loss with different types and total loss. Compared to Table 3, it is 

seen that the values are much larger. For example, the mean of total loss increases from .995 to 10.296, 

and particularly, the standard deviation increases from 2.142 to 196.216. The high quantile of 𝑄99.5 

increases from 13.191 to 1191.65. This indicates that the systemic risk can indeed cause a huge loss. 

Insight 4. The systemic risk in a smart home portfolio can be caused by one or more common vulnerabilities. 

It can result in a considerable loss. We suggest the insurer assess the systemic risk constantly. 

 

Table 14 

SUMMARY STATISTICS OF LOSS WITH DIFFERENT TYPES AND TOTAL LOSS WITH GAMMA DISTRIBUTION 

BASED ON SIMULATION. 

 Min 𝑸𝟐𝟓 Median 𝑸𝟕𝟓 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗 𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

L1 .000 .000 .000 91.419 105.888 113.108 521.267 59.029 629.788 655.514 4.734 88.769 

L2 .000 .000 .000 93.722 108.875 123.842 286.630 306.474 322.289 334.733 38.387 62.190 

L4 .000 .000 .000 .000 .000 .000 212.159 218.776 231.933 243.592 9.405 42.480 

L5 .000 .000 .000 .000 .000 .000 504.582 519.100 539.208 57.106 11.769 75.954 

TL .000 .000 .000 193.645 217.556 404.460 1039.804 1191.650 1405.556 1672.561 10.296 196.216 

 

Section 4: Pricing cyber risks in a smart home ecosystem 

In the current market, only a few companies provide insurance for smart homes, and the majority provide 

coverage via a personal cyber insurance policy7. According to a survey from Security.org8, 83 percent of 

 
7 https://www.valuepenguin.com/personal-cyber-home-insurance 
8 https://www.security.org/insurance/cyber/cost/ 
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respondents thought annual premiums of $25,000 coverage would cost under $150, while 93 percent 

thought they would cost less than $20. That explains why most insurers offer cyber insurance at the cost of 

less than $100 in the current market, and some charge even as little as $10 a month for $25,000 coverage. 

There are a limited number of companies that provide coverage for high-value homeowners, and the 

premiums for those higher-value endorsement range from a few hundred dollars to over a thousand per 

year, depending on the limit and coverage. For example, a major insurance company provides customized 

coverage with a limit of up to $250,000 with a premium of $1,652 per year. Since the smart home 

insurance market continues to expand, proper limits and affordable premiums need to be further studied. 

To address this, in the following, we discuss the pricing strategies for cyber risks in a smart home 

ecosystem. 

Based on the loss analysis in the previous sections, we consider the following actuarial premium principles: 

• Expectation principle: 𝜌1(𝐿)  =  (1 + 𝜃)𝐸[𝐿], where 𝜃 >  0 is the loading parameter that reflects 

the risk preferences of the insurer. 

• Standard deviation principle: 𝜌2(𝐿)  =  𝐸[𝐿]  +  𝜃√𝑉𝑎𝑟(𝐿). 

• Gini mean difference (GMD) principle: 𝜌3(𝐿)  =  𝐸[𝐿]  +  𝜃𝐺𝑀𝐷(𝐿) where 

𝐺𝑀𝐷(𝐿) =  𝐸 [|𝐿1 − 𝐿2|], 

is a statistical measure of variability, and 𝐿1 and 𝐿2 be a pair of independent copies of 𝐿; see [19, 

20].  

• Conditional tail expectation: 

𝜌4(𝐿)  =  𝐸[𝐿|𝐿 ≥  𝑉𝑎𝑅𝛽], 

where 𝑉𝑎𝑅𝛽 is the value-at-risk at level 𝛽 ∈  (0,1) 

𝑉𝑎𝑅𝛽  = min
𝛾

{𝛾 ∶  𝑃 (𝐿 ≤  𝛾) ≥  𝛽},  

For more details on the conditional tail expectation, please refer to [21, 22]. 

In the following, we consider the attack scenario in Figure 3. Similar to Section 2.3.2, we use the BAG 

approach. To mimic the risk in practice, we assume that the outside exploitation probability for 𝑉1, 𝑉2, and 

𝑉7 are .01, .02, and .9, respectively. Further, the inside exploration probability is .01. For the loss 

distributions, we assume that L1 and L2 follow exponential distributions, i.e., L1  ∼  exp(𝜆1), and L2  ∼

 exp(𝜆2), where 

𝜆1  = ∑ 𝜶1𝐼(𝑉𝑖)

𝑖∈ℒ𝐴 

  , 𝜆2  = ∑ 𝜶2𝐼(𝑉𝑗)

𝑗∈ℒ𝐵

 

and ℒ𝐴 = {1,2,3,4,7} , ℒ𝐵 = {3,5}, and 

𝜶1  =  (1/160,1/32,1/80,0,0,1/160), 𝜶2  =  (0,0,1/640,0,1/320,0,0). 

L3 and L4 follow a lognormal distribution, Lognorm(𝜇, 𝜎) , where (𝜇, 𝜎)  =  (7,1). 𝐿5  and 𝐿6  follow Gamma 

distributions, i.e., L5  ∼  Γ(𝛼1, 𝛽), and L6  ∼  Γ(𝛼2, 𝛽), where (𝛼1, 𝛼2, 𝛽)  =  (1000,2000,1). 

Algorithm 1 is again used to simulate the losses, and the exploit probability 𝑒𝑗  is also computed based on 

Eq. (9), 𝑗 =  1, … ,7. The number of simulations is set to be 𝑅=10,000. Table 15 displays the summary 

statistics of losses based on the simulation. We observe huge losses under some scenarios (e.g., high 

quantiles of L4 and L6). 
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Table 15 

SUMMARY STATISTICS OF DIFFERENT TYPES OF LOSSES AND THE TOTAL LOSS BASED ON THE 

SIMULATION. 

 Min 𝑸𝟐𝟓 Median 𝑸𝟕𝟓  𝑸𝟗𝟎  𝑸𝟗𝟓  𝑸𝟗𝟗  𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

L1 .00 28.31 92.35 204.10 354.61 476.86 749.93 867.01 1143.49 1875.83 144.81 165.50 

L2 .00 .00 .00 .00 .00 .00 .00 199.73 704.06 1388.21 3.02 43.15 

L3 .00 21.26 48.13 99.59 191.60 273.29 57.05 727.44 1047.45 4597.62 83.16 123.43 

L4 .00 .00 .00 .00 .00 .00 .00 868.25 4867.59 15563.73 18.80 319.33 

L5 .00 .00 .00 .00 .00 .00 .00 998.13 1029.31 1069.61 9.46 96.69 

L6 .00 .00 .00 .00 .00 .00 .00 2004.76 2072.27 2150.52 19.70 198.09 

TL .00 87.22 181.37 332.07 539.64 771.11 2142.00 2458.68 5326.47 16521.96 278.95 465.62 

4.1 PRICING BASED ON THE MARKET DATA 

In this section, we study the pricing strategies based on market data. For comparison purposes, we 

consider the premium charged by a company (A) with $1,000 deductible and $50,000 coverage limit for 

one year policy period. Company A provides coverage for the following risks: cyber extortion, data 

restoration, crisis management, and cyber bullying. The yearly premiums are displayed in Table 16. Since 

we have the same business line L4 (e.g. cyber extortion), it is used as a standard to determine the 

parameters in our pricing formulas. Specifically, we fix the premium for L4 as 28, and determine the 

parameters in 𝜌1  to 𝜌4 based on the simulated losses. The parameters are .5, .03, .25, and .34, respectively. 

The deductible and coverage limit remain the same as those of company A. 

Table 16 

CYBER INSURANCE OFFERED BY COMPANY A WITH $1,000 DEDUCTIBLE AND $50,000 COVERAGE LIMIT 

FOR ONE YEAR POLICY PERIOD. 

Coverage type Cyber extortion Data restoration Crisis management Cyber bullying Total Premium 

Premium 28 151 231 28 438 

 

Table 17 shows the premium for each business line under different premium principles. The total premium 

is the sum of all premiums. In addition, we compute the premium based on the aggregated loss. 

Table 17 

PREMIUMS UNDER DIFFERENT PRICING PRINCIPLES, WHERE ‘Total premium’ IS THE SUM OF ALL 

PREMIUMS, AND ‘Premium*’ REPRESENTS THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

Premium 𝝆𝟏 𝝆𝟐 𝝆𝟑 𝝆𝟒 

𝐿1 217 150 185 211 

𝐿2 5 4 5 5 

𝐿3 125 87 107 120 

𝐿4 28 28 28 28 

𝐿5 14 12 14 14 

𝐿6 30 26 29 30 
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Total premium 418 307 368 408 

Premium* 418 293 355 422 

 

It is seen that for total premium, 𝜌1  is the largest (418) while 𝜌2  is the smallest (293). For the premium 

determined from the aggregated loss, we observe similar results. In the following, we assess the 

performance of premium principles based on the profit and loss ratio (LR): 

Profit =  Premium −  Claim,  

LR =
Claim

Premium
 

We assume that the permissible loss ratio is 40%. 

Consider a portfolio with 500 policyholders who purchase smart home insurance policies. The premiums 

are charged according to Table 17. The loss scenarios of the portfolio are simulated 10,000 times. Table 18 

shows the summary statistics of portfolio profit based on the loss of each business line and aggregated loss 

for different pricing principles. It is observed that, in this case, all the profits are positive. 𝜌1  leads to the 

largest profit, and 𝜌2  leads to the minimum profit. All the standard deviations are the same because the 

coverage limits and deducible are the same. The summary statistics and loss ratios are shown in Table 19. It 

is seen that the mean loss ratios are very low (namely less than .1) for all premium principles, and the high 

quantiles of loss ratios (e.g., 𝑄99.9) are still less than 40%. But the worst-case scenarios for 𝜌2  and 𝜌3  are 

beyond the permissible loss ratio of 40%. 

Table 18 

SUMMARY STATISTICS OF PROFITS UNDER DIFFERENT PRICING PRINCIPLES WITH $1,000 DEDUCTIBLE AND 

$50,000 COVERAGE LIMIT, WHERE ‘PROFIT’ REPRESENTS THE PROFIT BASED ON THE LOSS OF EACH 

BUSINESS LINE AND ‘PROFIT*’ REPRESENTS THE PROFIT BASED ON THE AGGREGATED LOSS. 

  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎 𝑸𝟏𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 Max Mean SD 

𝜌1 
Profit 

Profit* 

127,549 

127,549 

174,542 

174,542 

183,192 

183,192 

186,869 

186,869 

189,152 

189,152 

196,215 

196,215 

199,612 

199,612 

207,628 

207,628 

195,089 

195,089 

6,429 

6,429 

𝜌2 
Profit 

Profit* 

72,049 

65,049 

119,042 

112,042 

127,692 

120,692 

131,369 

124,369 

133,652 

126,652 

140,715 

133,715 

144,112 

137,112 

152,128 

145,128 

139,589 

132,589 

6,429 

6,429 

𝜌3 
Profit 

Profit* 

102,549 

96,049 

149,542 

143,042 

158,192 

151,692 

161,869 

155,369 

164,152 

157,652 

171,215 

164,715 

174,612 

168,112 

182,628 

176,128 

170,089 

163,589 

6,429 

6,429 

𝜌4 
Profit 

Profit* 

122,549 

116,549 

169,542 

163,542 

178,192 

172,192 

181,869 

175,869 

184,152 

178,152 

191,215 

185,215 

194,612 

188,612 

202,628 

196,628 

190,089 

184,089 

6,429 

6,429 
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Table 19 

SUMMARY STATISTICS OF PROFITS UNDER DIFFERENT PRICING PRINCIPLES WITH $1,000 DEDUCTIBLE AND 

$50,000 COVERAGE LIMIT, WHERE ‘LR’ REPRESENTS THE LR BASED ON THE LOSS OF EACH BUSINESS LINE 

AND ‘LR*’ REPRESENTS THE LR BASED ON THE AGGREGATED LOSS. 

  Min 𝑸𝟐𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 𝑸𝟖𝟎 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗.𝟗𝟗 Max Mean SD 

𝜌1 
LR 

LR* 

.01 

.01 

.04 

.04 

.06 

.06 

.08 

.08 

.09 

.09 

.11 

.11 

.12 

.12 

.19 

.19 

.24 

.24 

.39 

.39 

.07 

.07 

.03 

.03 

𝜌2 
LR 

LR* 

.01 

.01 

.06 

.06 

.08 

.09 

.11 

.12 

.12 

.12 

.14 

.15 

.17 

.18 

.26 

.27 

.32 

.34 

.53 

.56 

.09 

.09 

.04 

.04 

𝜌3 
LR 

LR* 

.01 

.01 

.05 

.05 

.07 

.07 

.09 

.10 

.10 

.10 

.12 

.12 

.14 

.15 

.22 

.22 

.27 

.28 

.44 

.46 

.08 

.08 

.03 

.04 

𝜌4 
LR 

LR* 

.01 

.01 

.05 

.05 

.06 

.06 

.08 

.09 

.09 

.09 

.11 

.11 

.13 

13 

.19 

.20 

.24 

.25 

.40 

.41 

.07 

.07 

.03 

.03 

 

It should be pointed out that some companies are charging $0 deductibles in practice. For example, 

Company B offers a smart home policy covering cyber extortion and ransomware, cyber financial loss, and 

cyber personal protection. The coverage and limits are displayed in Table 20. We apply the premium 

strategy of company B to our simulated portfolio losses. The summary statistics of the profit and loss ratio 

are shown in Table 21. It can be seen that under this premium strategy, company B can’t make a profit, and 

the mean loss ratio is 1.35, much larger than the permissible loss ratio. 

 

Table 20 

SMART HOME INSURANCE POLICY OFFERED BY COMPANY B WITH $0 DEDUCTIBLE AND $50,000 

COVERAGE LIMIT FOR ALL COVERED EVENTS. 

 Coverage limit  
Premium 

Cyber extortion Cyber financial loss Cyber personal protection All covered events 

10,000 50,000 50,000 50,000 200 

 

Table 21 

SUMMARY STATISTICS OF PROFIT AND LOSS RATIO UNDER THE PREMIUM STRATEGY OF COMPANY B. 

 Min Q1 Q5 Q10 Q50 Q95 Q995 Q999 Max Mean SD 

Profit -106,801 -61,674 -51,710 -46,830 -34,010 -20,912 -13,866 -10,635 -4,540 -34,764 9,416 

LR 1.05 1.16 1.21 1.24 1.34 1.52 1.65 1.74 2.07 1.35 .09 

 

4.2 PRICING STRATEGIES 

In this section, we discuss adjusting the premiums under the permissible loss ratio based on the scenario of 

Table 17. 
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Deducible. We consider different deductibles other than $1,000 while the premiums and coverage remain 

the same. In Appendix A, the profits and loss ratios are shown in Tables 24 to 33 under deductibles $500, 

$250, $200, $150, and $100. 

We consider two strategies: i) the permissible mean loss ratio is 40%; ii) the permissible high quantile of 

loss ratios 𝑄99.5 is 40%. Based on Tables 24 to 33, we recommend various deductibles for different pricing 

principles and show their mean profits in Table 22. 

 

Table 22 

RECOMMENDED DEDUCTIBLES UNDER DIFFERENT PRICING PRINCIPLES. DEDUCTIBLES/MEAN PROFIT 1 

AND 2 ARE DETERMINED BASED ON THE MEAN LOSS RATIO AND 99.5TH LOSS RATIO OF 40%, 

RESPECTIVELY. ‘Premium*’ REPRESENTS THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

 Total premium Coverage limit Deductible 1 Mean Profit 1 Deductible 2 Mean Profit 2 

𝜌1 
Premium 

Premium* 

418 

418 

50,000 

50,000 

150 

150 

131,809 

131,809 

250 

250 

154,670 

154,670 

𝜌2 
Premium 

Premium* 

307 

293 

50,000 

50,000 

250 

250 

99,170 

92,170 

500 

500 

125,380 

118,380 

𝜌3 
Premium 

Premium* 

368 

355 

50,000 

50,000 

200 

200 

119,583 

113,083 

500 

500 

155,880 

149,380 

𝜌4 
Premium 

Premium* 

408 

396 

50,000 

50,000 

150 

150 

126,809 

120,809 

500 

500 

175,880 

169,880 

 

Compared to Table 18, although the mean profits are reduced, the deductibles can be significantly smaller. 

Premiums. We fix the coverage limit $50,000 and the deductible $1,000 to discuss different premium 

strategies. Because of the coverage limit and deductible, the premiums based on the four pricing principles 

are larger than the mean of total loss (i.e., 279). We set different premiums in Table 23, which correspond 

to 75%, 71%, 70%, 50%, 25%, and 20% of the mean of the total loss, respectively. 

It is seen that if the permissible loss ratio of 𝑄99.5 is set to be 40%, the premium is $198 and the mean profit 

is $85,089; if the permissible mean loss ratio is to be 40%, the premium is $70 and mean profit is $21,089. 

Therefore, it is possible for insurers to offer a smart home insurance policy with a low premium (e.g., $70) 

but decent coverage (i.e., $50,000). 
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Table 23 

SUMMARY STATISTICS OF PROFITS AND LOSS RATIOS WITH $1,000 DEDUCTIBLE AND $50,000 COVERAGE 

LIMIT. 

Premium  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎  𝑸𝟓𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗𝟗.𝟗 Max Mean SD 

210 
Profit 23,549 70,542 79,192 82,869 92,215 99,089 101,761 102,699 103,628 91,089 6,429 

LR .01 .04 .06 .07 .12 .25 .38 .47 .78 .13 .06 

198 
Profit 17,549 64,542 73,192 76,869 86,215 93,089 95,761 96,699 97,628 85,089 6,429 

LR .01 .04 .06 .07 .13 .26 .40 .50 .82 .14 .06 

195 
Profit 16,049 63,042 71,692 75,369 84,715 91,589 94,261 95,199 96,128 83,589 6,429 

LR .01 .04 .06 .07 .13 .26 .41 .50 .84 .14 .07 

140 
Profit -11,451 35,542 44,192 47,869 57,215 64,089 66,761 67,699 68,628 56,089 6,429 

LR .02 .06 .08 .10 .18 .37 .57 .70 1.16 .20 .09 

70 
Profit -46,451 542 9,192 12,869 22,215 29,089 31,761 32,699 33,628 21,089 6,429 

LR .04 .11 .17 .20 .37 .74 1.13 1.41 2.33 .40 .18 

56 
Profit -53,451 -6,458 2,192 5,869 15,215 22,089 24,761 25,699 26,628 14,089 6,429 

LR .05 .14 .21 .25 .46 .92 1.42 1.76 2.91 .50 .23 
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Section 5: Conclusion and Discussion 

We have presented a practical quantitative framework for insurers to assess and price smart home cyber 

risks. The framework consists of four components: (i) identifying vulnerability-incurred cyber risks; (ii) 

classifying cyber risks into business lines; (iii) modeling cyber risks; and (iv) determining insurance 

premiums and coverages. We discover that common vulnerabilities can cause dependence among different 

business risks and tail dependence. We recommend the BAG approach for assessing cyber risks in the 

smart home ecosystem because it can provide more accurate results. It is worth mentioning that a business 

line with heavy tail distribution dominates the total loss. The systemic risk in a smart home portfolio is 

caused by one or more common vulnerabilities that can result in a considerable loss. We also recommend 

different pricing strategies with various deductibles and premiums for smart home policies, which can 

make the products more attractive in the market. 

The current study has some limitations which need to be addressed in future studies. First, the loss 

distributions and parameters are set based on experience and limited market data. They can be further 

calibrated when the actual claim data are available. Second, smart homes may have different network 

structures and protocols, requiring an individualized risk assessment (i.e., individual BAG analysis). This can 

further enhance the premium strategy by creating individualized smart home policies. However, it requires 

much effort from insurers, such as security assessment and loss estimation. Third, the coverage of 

ransomware or extortion may need further attention in practice since the U.S. government strongly 

discourages all private companies and citizens from paying ransom or extortion demands, and the payment 

of ransomware claims may lead to some legal issues9. Nevertheless, the present study provides practical 

guidance for insurers to price cyber risks at the initial stage of the development of the smart home 

insurance market. 

 

 

 

 

 

 

 

 
9 https://www.fbi.gov/how-we-can-help-you/safety-resources/scams-and-safety/common-scams-and-

crimes/ransomware 

https://soa.qualtrics.com/jfe/form/SV_3wSiIgPjC61prOC
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Appendix A: Various deductibles 

Table 24 

SUMMARY STATISTICS OF PROFITS UNDER $500 DEDUCTIBLE AND $50,000 COVERAGE. ‘Profit*’ 

REPRESENTS THE PROFIT BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎 𝑸𝟏𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 Max Mean SD 

𝜌1 
Profit 

Profit* 
112,217 
112,217 

157,355 
157,355 

166,918 
166,918 

170,996 
170,996 

173,536 
173,536 

181,815 
181,815 

186,350 
186,350 

199,217 
199,217 

180,880 
180,880 

7,743 
7,743 

𝜌2 
Profit 

Profit* 
56,717 
49,717 

101,855 
94,855 

111,418 
104,418 

115,496 
108,496 

118,036 
111,036 

126,315 
119,315 

130,850 
123,850 

143,717 
136,717 

125,380 
118,380 

7,743 
7,743 

𝜌3 
Profit 

Profit* 
87,217 
80,717 

132,355 
125,855 

141,918 
135,418 

145,996 
139,496 

148,536 
142,036 

156,815 
150,315 

161,350 
154,850 

174,217 
167,717 

155,880 
149,380 

7,743 
7,743 

𝜌4 
Profit 

Profit* 
107,217 
101,217 

152,355 
146,355 

161,918 
155,918 

165,996 
159,996 

168,536 
162,536 

176,815 
170,815 

181,350 
175,350 

194,217 
188,217 

175,880 
169,880 

7,743 
7,743 

Table 25 

SUMMARY STATISTICS OF LOSS RATIOS UNDER $500 DEDUCTIBLE AND $50,000 COVERAGE. ‘LR*’ 

REPRESENTS THE LOSS RATIO BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟐𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 𝑸𝟖𝟎 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗.𝟗𝟗 Max Mean SD 

𝜌1 
LR 

LR* 
.05 
.05 

.11 

.11 
.13 
.13 

.15 

.15 
.16 
.16 

.18 

.18 
.20 
.20 

.27 

.27 
.31 
.31 

.46 

.46 
.13 
.13 

.04 

.04 

𝜌2 
LR 

LR* 
.06 
.07 

.15 

.15 
.18 
.19 

.21 

.22 
.22 
.23 

.25 

.26 
.27 
.29 

.37 

.38 
.43 
.45 

.63 

.66 
.18 
.19 

.05 

.05 

𝜌3 
LR 

LR* 
.05 
.06 

.12 

.13 
.15 
.15 

.18 

.18 
.18 
.19 

.21 

.21 
.23 
.24 

.31 

.32 
.36 
.37 

.53 

.55 
.15 
.16 

.04 

.04 

𝜌4 
LR 

LR* 
.05 
.05 

.11 

.11 
.13 
.14 

.16 

.16 
.16 
.17 

.19 

.19 
.21 
.21 

.28 

.28 
.32 
.33 

.47 

.49 
.14 
.14 

.04 

.04 

 

Table 26 

SUMMARY STATISTICS OF PROFITS UNDER $250 DEDUCTIBLE AND $50,000 COVERAGE. ‘Profit*’ 

REPRESENTS THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎 𝑸𝟏𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 Max Mean SD 

𝜌1 
Profit 

Profit* 
85,759 
85,759 

129,401 
129,401 

139,186 
139,186 

143,625 
143,625 

146,351 
146,351 

155,495 
155,495 

160,688 
160,688 

178,804 
178,804 

154,670 
154,670 

8,672 
8,672 

𝜌2 
Profit 

Profit* 
30,259 
23,259 

73,901 
66,901 

83,686 
76,686 

88,125 
81,125 

90,851 
83,851 

99,995 
92,995 

105,188 
98,188 

123,304 
116,304 

99,170 
92,170 

8,672 
8,672 

𝜌3 
Profit 

Profit* 
60,759 
54,259 

104,401 
97,901 

114,186 
107,686 

118,625 
112,125 

12,1351 
114,851 

130,495 
123,995 

135,688 
129,188 

153,804 
147,304 

129,670 
123,170 

8,672 
8,672 

𝜌4 
Profit 

Profit* 
80,759 
74,759 

124,401 
118,401 

134,186 
128,186 

138,625 
132,625 

141,351 
135,351 

150,495 
144,495 

155,688 
149,688 

173,804 
167,804 

149,670 
143,670 

8,672 
8,672 
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Table 27 

SUMMARY STATISTICS OF LOSS RATIOS UNDER $250 DEDUCTIBLE AND $50,000 COVERAGE. ‘LR*’ 

REPRESENTS THE LOSS RATIO BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟐𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 𝑸𝟖𝟎 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗.𝟗𝟗 Max Mean SD 

𝜌1 
LR 

LR* 
.14 
.14 

.23 

.23 
.26 
.26 

.28 

.28 
.29 
.29 

.31 

.31 
.33 
.33 

.40 

.40 
.45 
.45 

.59 

.59 
.26 
.26 

.04 

.04 

𝜌2 
LR 

LR* 
.20 
.21 

.31 

.33 
.35 
.37 

.39 

.40 
.40 
.41 

.43 

.45 
.45 
.48 

.55 

.58 
.61 
.64 

.80 

.84 
.35 
.37 

.06 

.06 

𝜌3 
LR 

LR* 
.16 
.17 

.26 

.27 
.29 
.30 

.32 

.33 
.33 
.34 

.36 

.37 
.38 
.39 

.46 

.48 
.51 
.53 

.67 

.69 
.30 
.31 

.05 

.05 

𝜌4 
LR 

LR* 
.15 
.15 

.24 

.24 
.26 
.27 

.29 

.30 
.30 
.31 

.32 

.33 
.34 
.35 

.41 

.43 
.46 
.47 

.60 

.62 
.27 
.27 

.04 

.04 

 

Table 28 

SUMMARY STATISTICS OF PROFITS UNDER $200 DEDUCTIBLE AND $50,000 COVERAGE. ‘Profit*’ 

REPRESENTS THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎 𝑸𝟏𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 Max Mean SD 

𝜌1 
Profit 

Profit * 

75,128 

75,128 

118,921 

118,921 

128,691 

128,691 

133,275 

133,275 

136,076 

136,076 

145,387 

145,387 

150,741 

150,741 

169,937 

169,937 

144,583 

144,583 

8,870 

8,870 

𝜌2 
Profit 

Profit* 

19,628 

12,628 

63,421 

56,421 

73,191 

66,191 

77,775 

70,775 

80,576 

73,576 

89,887 

82,887 

95,241 

88,241 

114,437 

107,437 

89,083 

82,083 

8,870 

8,870 

𝜌3 
Profit 

Profit* 

50,128 

43,628 

93,921 

87,421 

103,691 

97,191 

108,275 

101,775 

111,076 

104,576 

120,387 

113,887 

125,741 

119,241 

144,937 

138,437 

119,583 

113,083 

8,870 

8,870 

𝜌4 
Profit 

Profit* 

70,128 

64,128 

113,921 

107,921 

123,691 

117,691 

128,275 

122,275 

131,076 

125,076 

140,387 

134,387 

145,741 

139,741 

164,937 

158,937 

139,583 

133,583 

8,870 

8,870 

 

Table 29 

SUMMARY STATISTICS OF LOSS RATIOS UNDER $200 DEDUCTIBLE AND $50,000 COVERAGE. ‘LR*’ 

REPRESENTS THE LOSS RATIO BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟐𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 𝑸𝟖𝟎 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗.𝟗𝟗 Max Mean SD 

𝜌1 
LR 

LR* 

.19 

.19 

.28 

.28 

.30 

.30 

.33 

.33 

.34 

.34 

.36 

.36 

.38 

.38 

.45 

.45 

.50 

.50 

.64 

.64 

.31 

.31 

.04 

.04 

𝜌2 
LR 

LR* 

.25 

.27 

.38 

.40 

.41 

.43 

.45 

.47 

.46 

.48 

.49 

.52 

.52 

.55 

.62 

.65 

.68 

.71 

.87 

.91 

.42 

.44 

.06 

.06 

𝜌3 
LR 

LR* 

.21 

.22 

.32 

.33 

.35 

.36 

.38 

.39 

.39 

.40 

.41 

.43 

.44 

.45 

.52 

.53 

.57 

.59 

.73 

.75 

.35 

.36 

.05 

.05 

𝜌4 
LR 

LR* 

.19 

.20 

.29 

.29 

.31 

.32 

.34 

.35 

.35 

.36 

.37 

.38 

.39 

.41 

.47 

.48 

.51 

.53 

.66 

.68 

.32 

.33 

.04 

.04 
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Table 30 

SUMMARY STATISTICS OF PROFITS UNDER $150 DEDUCTIBLE AND $50,000 COVERAGE. ‘Profit*’ 

REPRESENTS THE PROFIT BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎 𝑸𝟏𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 Max Mean SD 

𝜌1 
Profit 

Profit* 

61,749 

61,749 

105,618 

105,618 

115,508 

115,508 

120,208 

120,208 

123,125 

123,125 

132,594 

132,594 

138,089 

138,089 

158,763 

158,763 

131,809 

131,809 

9,059 

9,059 

𝜌2 
Profit 

Profit* 

6,249 

-751 

50,118 

43,118 

60,008 

53,008 

64,708 

57,708 

67,625 

60,625 

77,094 

70,094 

82,589 

75,589 

103,263 

96,263 

76,309 

69,309 

9,059 

9,059 

𝜌3 
Profit 

Profit* 

36,749 

30,249 

80,618 

74,118 

90,508 

84,008 

95,208 

88,708 

98,125 

91,625 

107,594 

101,094 

113,089 

106,589 

133,763 

127,263 

106,809 

100,309 

9,059 

9,059 

𝜌4 
Profit 

Profit* 

56,749 

50,749 

100,618 

94,618 

110,508 

104,508 

115,208 

109,208 

118,125 

112,125 

127,594 

121,594 

133,089 

127,089 

153,763 

147,763 

126,809 

120,809 

9,059 

9,059 

 

Table 31 

SUMMARY STATISTICS OF LOSS RATIOS UNDER $150 DEDUCTIBLE AND $50,000 COVERAGE. ‘LR*’ 

REPRESENTS THE LOSS RATIO BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟐𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 𝑸𝟖𝟎 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗.𝟗𝟗 Max Mean SD 

𝜌1 
LR 

LR* 

.24 

.24 

.34 

.34 

.37 

.37 

.39 

.39 

.40 

.40 

.42 

.42 

.45 

.45 

.52 

.52 

.56 

.56 

.70 

.70 

.37 

.37 

.04 

.04 

𝜌2 
LR 

LR* 

.33 

.34 

.46 

.48 

.50 

.52 

.54 

.56 

.55 

.57 

.58 

.61 

.61 

.64 

.70 

.74 

.76 

.80 

.96 

1.01 

.50 

.53 

.06 

.06 

𝜌3 
LR 

LR* 

.27 

.28 

.39 

.40 

.42 

.43 

.45 

.46 

.46 

.47 

.48 

.50 

.51 

.53 

.59 

.61 

.64 

.66 

.80 

.83 

.42 

.43 

.05 

.05 

𝜌4 
LR 

LR* 

.25 

.25 

.35 

.36 

.37 

.39 

.40 

.42 

.41 

.42 

.44 

.45 

.46 

.47 

.53 

.54 

.58 

.59 

.72 

.74 

.38 

.39 

.04 

.05 

 

Table 32 

SUMMARY STATISTICS OF PROFITS UNDER $100 DEDUCTIBLE AND $50,000 COVERAGE. ‘Profit*’ 

REPRESENTS THE PROFIT BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟏 𝑸𝟓 𝑸𝟏𝟎 𝑸𝟏𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 Max Mean SD 

𝜌1 
Profit 

Profit* 

44,965 

44,965 

89,249 

89,249 

99,248 

99,248 

104,001 

104,001 

107,026 

107,026 

116,589 

116,589 

122,186 

122,186 

144,683 

144,683 

115,821 

115,821 

9,223 

9,223 

𝜌2 
Profit 

Profit* 

-10,535 

-17,535 

33,749 

26,749 

43,748 

36,748 

48,501 

41,501 

51,526 

44,526 

61,089 

54,089 

66,686 

59,686 

89,183 

82,183 

60,321 

53,321 

9,223 

9,223 

𝜌3 
Profit 

Profit* 

19,965 

13,465 

64,249 

57,749 

74,248 

67,748 

79,001 

72,501 

82,026 

75,526 

91,589 

85,089 

97,186 

90,686 

119,683 

113,183 

90,821 

84,321 

9,223 

9,223 

𝜌4 
Profit 

Profit* 

39,965 

33,965 

84,249 

78,249 

94,248 

88,248 

99,001 

93,001 

102,026 

96,026 

111,589 

105,589 

117,186 

111,186 

139,683 

133,683 

110,821 

104,821 

9,223 

9,223 
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Table 33 

SUMMARY STATISTICS OF LOSS RATIOS UNDER $100 DEDUCTIBLE AND $50,000 COVERAGE. ‘LR*’ 

REPRESENTS THE LOSS RATIO BASED ON THE PREMIUM DETERMINED FROM THE AGGREGATED LOSS. 

  Min 𝑸𝟐𝟓 𝑸𝟓𝟎 𝑸𝟕𝟓 𝑸𝟖𝟎 𝑸𝟗𝟎 𝑸𝟗𝟓 𝑸𝟗𝟗.𝟓 𝑸𝟗.𝟗𝟗 Max Mean SD 

𝜌1 
LR 

LR* 

.31 

.31 

.42 

.42 

.44 

.44 

.47 

.47 

.48 

.48 

.50 

.50 

.53 

.53 

.59 

.59 

.63 

.63 

.78 

.78 

.45 

.45 

.04 

.04 

𝜌2 
LR 

LR* 

.42 

.44 

.57 

.59 

.60 

.63 

.64 

.67 

.65 

.68 

.68 

.72 

.71 

.75 

.81 

.84 

.86 

.90 

1.07 

1.12 

.61 

.64 

.06 

.06 

𝜌3 
LR 

LR* 

.35 

.36 

.47 

.49 

.50 

.52 

.54 

.56 

.54 

.56 

.57 

.59 

.60 

.62 

.67 

.70 

.72 

.75 

.89 

.92 

.51 

.52 

.05 

.05 

𝜌4 
LR 

LR* 

.32 

.32 

.43 

.44 

.45 

.47 

.48 

.50 

.49 

.51 

.51 

.53 

.54 

.55 

.61 

.62 

.65 

.67 

.80 

.83 

.46 

.47 

.05 

.05 
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