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Abstract

We study a smoothing spline Poisson regression model for the analysis of mortality data.
Being a non-parametric approach it is intrinsically robust, that it is a penalized likelihood
estimation method makes available an approximate Bayesian confidence interval and im-
portantly the software gss, its implementation on the freely available statistical package
R, makes it easily accessible to the user. All of this make it an attractive alternative to (usu-
ally computationally intensive) fully Bayesian analysis while avoiding the complexity of
high-dimensional prior specification.

1. INTRODUCTION

Estimation of mortality rates from data is a well studied problem by not only actuaries but
also by demographers and statisticians. There is an extensive literature with procedures
adopting either a purely mathematical, frequentist or a Bayesian approach. It is now well
accepted though that the problem is inherently statistical and hence a graduation type
mathematical approach which does not recognize this variability is no longer in vogue.

As a vestige of the mathematical methods, the earlier statistical methods employed a two
step procedure towards graduation. First, they calculated raw mortality rates as a ratio
of the number of deaths to the exposure. Second, they found a smooth set of graduated
rates close to the raw mortality rates; this step is known as graduation. The books by
Benjamin and Pollard (1993) and London (1985) are good sources for examples of such
early methods.

The first step supposedly made suitable adjustments to account for the actuarial studies
not being simple binomial experiments. The latter due to not only migration but also due
to insured population dynamics. I say supposedly as contrary to the intent behind some
of the exposure calculations the raw mortality rates turned out to be statistically biased
and asymptotically inconsistent estimates of the underlying mortality rates, see Elveback
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(1958), Breslow and Crowley (1974) and Hoem (1984). More importantly violation of the
likelihood principle forced them to make unrealistic assumptions on migration and resort
to ‘non-standard’ reasoning. A more direct approach to calculating raw mortality rates is
via maximum likelihood (ML) estimation, see Broffitt (1984) for an excellent coverage. By
adhering to the likelihood principle, ML estimation avoids the above mentioned prob-
lems in exposure calculations. Moreover, it indirectly derives the ‘correct’ exposure but
by subscribing to a sound statistical reasoning. This is skillfully expressed by Boom (1984)
in discussing Broffitt (1984): This is intuitively superior to the concept of exposure familiar to
us in the actuarial estimation/Balducci’s assumption combination, since the awkward nonsense of
having to expose the already dead still further to the ‘risk’ of death is avoided.

Once the first step is framed in a statistical manner it is only natural to combine it with
the second step, i.e. simultaneously arriving at smooth ‘graduated’ rates from the raw
data. For example, when using the maximum likelihood estimation method this will
result in the unconstrained maximization becoming constrained optimization. Unlike
the case of the first step, experience gained in graduation is used in current day models.
A well known graduation technique is the use of a mathematical formula, i.e. by using a
parametric model. Gompertz (1825) gave the first such model, namely

µx = Bcx (1)

which was later generalized by Makeham to

µx = A + Bcx (2)
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The above two models fail to address in-
fant mortality and the accident hump, both
common features of current mortality curves.
A relatively more recent parametric model
which addresses such features is that of Hel-
ligman and Pollard (1980), namely

qx

1 − qx
= A(x+B)C

+D exp
[
−E

(
log

[x
F

])2
]
+GHx

(3)

An excellent example of maximum likelihood
estimation of mortality rates using a paramet-
ric model (a generalization of the Gompertz-
Makeham formula) can be found in Forfar,
McCutcheon and Wilkie (1988).
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A statistical paradigm compatible with the likelihood principle is the Bayesian paradigm
which has recently gained popularity due to significant increase in accessible comput-
ing power. The Bayesian paradigm by explicitly allowing for incorporation of prior be-
liefs through the prior distribution is particular attractive for mortality rate estimation.
Moreover, by delivering the posterior and predictive distributions, a Bayesian analysis
empowers a user to answer a myriad of questions. The earlier Bayesian approaches, see
Kimeldorf and Jones (1967) and Hickman and Miller (1977), worked with multivariate
normal likelihood and prior. As a result of using conjugate priors these model resulted in
multivariate normal posteriors. Smoothness constraints were loosely imposed using pos-
itive correlation structures. Though computationally easy, prior specification remained
an issue with such models. Through reparametrization Broffitt (1984,86 and 88) demon-
strated that monotonicity and convexity type constraints could be easily imposed on the
estimates and moreover one could continue to use conjugate type priors (keeping com-
putational complexity minimal). Carlin (1992) shows that by the use of monte carlo tech-
niques one could get have the choice of using non-conjugate priors while retaining the
ability to impose constraints of the above type. The recent article by Dellaportas, Smith
and Stavropoulos (2001) combines the power of monte carlo techniques with the tech-
nique of graduation by a mathematical formula. In this way they are able to impose very
specific functional form for the estimated mortality curve.

The goal of this work is to propose smoothing spline Poisson regression method for grad-
uation of mortality data. Unlike other similar but parametric methods, this is a nonpara-
metric which brings along a robustness which is appealing. Also, not being a Bayesian
approach it avoids the issue of specification of high-dimensional priors. Nevertheless,
the equivalent Bayes model provides approximate Bayesian posterior confidence inter-
vals which makes the method very appealing. And finally the availability of the package
gss on a free statistical environment makes the method very accessible to actuaries. In
this article we have a rather simple aggregate mortality example where the power of the
method proposed is not brought out. But the real advantage of the method lies when
looking at graduation problems involving select and ultimate rates and/or multiple un-
derwriting classes.

The next section briefly discusses the penalized likelihood method. Then in the following
section we discuss our model and in the final section we give details of our numerical
example. Before we end this section, we refer to Berger (1993) for a lucid discussion
and implications of the likelihood principle alluded to above. The problems that arise by
abandoning it are well expressed in Pratt (1962); we end this section with an example from
it. An engineer draws a random sample of electron tubes and measures the plate voltages under
certain conditions with a very accurate voltmeter, accurate enough so that measurement error is
negligible compared with the variability of the tubes. A statistician examines the measurements,
which look normally distributed and vary from 75 to 99 volts with a mean of 87 and a standard
deviation of 4. He makes the ordinary normal analysis, giving a confidence interval for the true
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mean. Later he visits the engineer’s laboratory, and notices that the voltmeter used reads as far as
100, so the population appears to be censored. this necessitates a new analysis, if the statistician
is orthodox. However, the engineer says that he has another meter. equally accurate and reading
to 100 volts, which he would have used if any voltage had ever been over 100. this is a relief to
the orthodox statistician, because it means that the population was effectively uncensored after all.
But the next day the engineer telephones and says, "I just discovered my high-range voltmeter was
not working the day I did the experiment you analyzed for me." the statistician ascertains that the
engineer would not have held up the experiment until the meter was fixed, and informs him that
a new analysis will be required. The engineer is astounded. he says, "But the experiment turned
out to be the same as if the high-range voltmeter had been working. I obtained the precise voltages
of my sample anyway, so I learned exactly what I would have learned if the high-range meter had
been available. next you will be asking about my oscilloscope."

2. PENALIZED LIKELIHOOD ESTIMATION

Penalized likelihood estimation is a likelihood based estimation method which traces its
origin back to Whittaker (1923) (discrete case) and Kimeldorf and Wahba (1970a,70b,71)
and Good and Gaskins (1971). The central idea is to estimate a function of interest η on a
domain X by

L(η|data) +
λ
2

J(η) (4)

where L(η|data) is the negative log-likelihood and J(η) is a quadratic roughness penalty
with a low dimensional null-space NJ = { f ∈ H : J( f ) = 0}. The minimizer above can be
seen to be the restricted maximum likelihood estimator in a model spaceMρ = { f : J( f ) =
ρ}, for some ρ > 0. Moreover, λ above can be seen to be the Lagrange multiplier.

An example of the above formulation is the cubic smoothing spline, see Klugman, Panjer
and Willmott (2004). It arises from the regression problem

Yi = η(xi) + εi, i = 1, . . . ,n (5)

where εi are independent random variables with εi ∼ N(0, σ2
i ). Let us assume that xi ∈

[0, 1], i = 1, . . . ,n. Then with the quadratic roughness penalty taken to be∫ 1

0
η̈(x)2dx, where η̈ is the second derivative of η. (6)

Now (4) in this problem is equivalent to

n∑
i=1

(
Yi − η(xi)
σi

)2

+
λ
2

∫ 1

0
η̈(x)2dx (7)



5

and from elementary properties of spline we see that the minimizer has to be a cubic
spline which is called the cubic smoothing spline. Observe that the null space NJ men-
tioned above in this case is the two dimensional space of all linear functions on [0, 1].

The above setup naturally leads to functional spaces which are Reproducing Kernel Hilbert
Spaces (RKHS) as the optimization problem then becomes tractable. This is so as the
log likelihood, being a smooth function of the evaluation functionals, to be a continuous
functional requires that so are the evaluations functionals and this is same as requiring
the function space (a Hilbert space) to be a RKHS. Moreover, it is then natural to take
the smoothness penalty J to be one induced by a semi-inner product on the RKHS. This
general setup is useful in extending the method to multivariate function estimation and
allows one to consider interesting classes of smooth functions, see Gu (2002). This is par-
ticularly interesting for graduating a select and ultimate table or/and while considering
at various underwriting.

Of particular interest is the equivalence of the penalized likelihood method to a Bayes
model with a Gaussian prior on H 	 NJ (with the covariance related to the reproducing
kernel) and a diffuse prior on NJ. This Bayes model makes available Bayesian posterior
confidence intervals. And these become approximate Bayesian confidence intervals in the
case of non-Gaussian response as it involves quadratic approximation of the likelihood
(Laplace’s method).

Smoothing parameter selection is an important practical issue in penalized likelihood
estimation. There are different score based methods, the scores being asymptotically close
to

1
n

n∑
i=1

(ηλ(xi) − η(xi))2. (8)

The idea being that the smoothing parameter is chosen to minimize the above. For de-
tails see Gu (2002). Interestingly, using the generalized cross validation based score for
choosing the smoothing parameter results in the pointwise Bayesian confidence intervals
having good across-the-function coverage, see Gu (2002) and references therein for more
details.

3. THE MODEL

Let Dx, for x = 0, 1, . . ., be the number of deaths observed at age (according to any of
the common used definition) x. Also let Ex, for x = 0, 1, . . ., be the total amount of time
the persons were under observation at age x. We assume that Dx is a Poisson distributed
random variable with parameter Exλ(x), i.e.

Pr (Dx = k) :=
1
k!

(λ(x)Ex)k exp{−Exλ(x)}. (9)
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Such a Poisson distribution has been assumed by many, for e.g. see Forfar, McCutcheon
and Wilkie (1988). Assuming the constant force of mortality within integral ages results
in the same likelihood as the above Poisson likelihood, see Hoem (1984). This fact has
been used in the Bayesian analysis of Broffitt (1988). Also for an argument that the Poisson
distribution assumption results from using the above constant force assumption, see Scott
(1982, 1984). In this connection also interesting are the articles Sverdup (1965) and Borgan
(1984). In the following we will assume the constant force within integral ages.

Given the above model we suppose that η(·) = logλ(·) lies in the space of all twice contin-
uously differentiable functions and by using the roughness penalty∫

η̈(x)2dx, where η̈ is the second derivative of η. (10)

we force the estimate to be a cubic spline. Estimates for qx are derived using the formula

qx = 1 − exp[−λ(x)], (11)

which results from the constant force assumption.

4. NUMERICAL EXAMPLE

One of the important reasons that smoothing spline Poisson regression is easy to use is
the availability of the package gss on the R environment. R is an extensible, well doc-
umented language and environment with a core group of developers spread out over
many countries. And it is freely available at www.r-project.org.

As an example, to demonstrate the simplicity of using the package we estimate the mor-
tality rates from the Female, English and Welsh Mortality data (1988-1992). This is the
data set used by Dellaportas, Smith and Stavropoulos (2001). The time axis was re-scaled
using a square root transformation to make the ratio Dx/Ex more evenly scattered. A few
other reasonable time transformation resulted in similar estimates - hence the answer
seemed to be robust to the particular choice. The R-code is given below.

t<-sqrt((0:74));
pois.fit <- gssanova((d/e)∼t,family="poisson",weights=e);
est <- predict(pois.fit,data.frame(t=t),se=TRUE);
plot((0:74),log(d/e),type="l",xlab="Age", ylab="Log Mortality");
lines((0:74),(est$fit),col=2);
lines((0:74),(est$fit+1.96*est$se),col=3);
lines((0:74),(est$fit-1.96*est$se),col=4);
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Figure 1 Raw Data (Black), Upper 95%, Lower 95% and Bayes Estimate.
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