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Abstract
A random process that includes jumps will in general have a quadratic

variation that itself forms a non-trivial random process. One might be
interested in moments of the quadratic variation process, for example in
order to characterize it or in order to approximate it with a known process.
The paper proposes a combinatoric approach to express higher moments
of the quadratic variation process in terms of higher order variations of
the original process and higher order autocovariations of the variations of
the original process. These have lent themselves to direct calculation by
Laplace transforms in the examples that gave rise to this work.

Suppose x1 and x2 are random variables and we want to calculate E
h
(x1 + x2)

2
i
.

One way to proceed might be

E
h
(x1 + x2)

2
i
= E

��
x21 + x

2
2

��
+ 2E [x1x2]

=
�
E
�
x21
�
+ E

�
x22
��
+ 2� (E [x1]E [x2])

where �, de�ned as satisfying E [x1x2] = �E [x1]E [x2], can be called a covaria-
tion coe¢ cient and

E
h
(x1 + x2)

2
i
=
�
E
�
x21
�
+ E

�
x22
��
+2�

8<: (E [x1] + E [x2])22
�

�
E [x1]2 + E [x2]2

�
2

9=;
The purpose of this paper is to state and prove Theorem 1 below which gener-
alizes this simple example to an arbitrary (possibly random) number of terms
x1 + x2 + ::: + xJ and beyond 2 to an arbitrary moment E [(x1 + x2 + :::)n].
The problem arose in work where fxjg were squared increments of a randomly
stopped jump process and each term on the right was summable. The theo-
rem will apply, however, to increments of discrete random processes generally,
so long as they satisfy the assumptions of the theorem to allow an application
of Fubini�s theorem when needed and to require covariation coe¢ cients of all
orders among the fxjg to satisfy a global uniformity condition.
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Theorem 1 If either 1 or 2:

1. xj � 0 almost always for all j, or

2.

E
�XII ���xj1;1 � � � xj1;i1x2j2;1 � � � x2j2;i2 � � � xljl;1 � � � xljl;il � �����

�
<1,

for all sets of indexed non-negative integers

(
il :
X
l

l � il = n
)
where, for

each such filg,
XII

is taken over all indexed sets of permutations of sets

of non-negative integers
�
fjl;i : 1 � i � ilgl

	
in which no two integers jl;i,

jl0;i0 are equal,

and if all covariation coe¢ cients of all orders among the fxjg are global,
not depending upon the speci�c subscripts j and j0 for any two distinct
xj and xj0 , as speci�ed in the statement of Lemma 7 below

then

E

240@X
j

xj

1An35 =

=
XI n!Y

l

l!il
�filg

XIV Y
m

1

jm!

266664(�1)
X
l

il;m�1

 X
l

il;m � 1
!
!Y

l

il;m!

X
j

 Y
l

E
�
xlj
�il;m!

377775
jm

where
XI

is taken over all sets of indexed non-negative integers

(
il :
X
l

l � il = n
)
,

for each such filg the covariation coe¢ cient �filg is as de�ned in Lemma 7 below

and for each such filg the
XIV

is taken over all sets of indexed non-negative

integers

(
jm; il;m :

X
m

jm � il;m = il for all l
)
.

Proof. The proof will be assembled as a series of Lemmata and Remarks.

Remark 2 If fxjg constitute squared increments of a discrete random process,
for example of a randomly stopped jump process, then they satisfy hypothesis 1
of Theorem 1. If fxjg constitute increments of a stopped discrete stochastic
process and if fxjg have �nite absolute moments of all orders then they satisfy
hypothesis 2 of Theorem 1 since in that case there will be only a �nite number
of xj.
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Remark 3 Everything in the expression for E

240@X
j

xj

1An35 in Theorem 1 is

combinatoric with the exception of all of the �filg and
X
j

 Y
l

E
�
xlj
�il;m!,

which carry the probabilistic content. In the applications from which this work
arose, these probabilistic expressions are, respectively, directly calculable and
directly summable for each filg and fil;mg in the combinatorics.

Lemma 4 (Multinomial Theorem - slightly restated)0@X
j

xj

1An

=
XI n!Y

l

il!l!il

XII
xj1;1 � � � xj1;i1x

2
j2;1 � � � x

2
j2;i2

� � � xljl;1 � � � x
l
jl;il

� ��

where
XI

is taken over all sets of indexed non-negative integers

(
il :
X
l

l � il = n
)

and, for each such set filg,
XII

is taken over all indexed sets of permutations

of sets of non-negative integers
�
fjl;i : 1 � i � ilgl

	
in which no two integers

jl;i, jl0;i0 are equal. (Compared to the usual statement of the multinomial the-
orem, here we treat each permutation of each fjl;i : 1 � i � ilgl as creating a
distinct monomial in

XII
.)

Proof. The monomials de�ned in
XI

and
XII

include all (and only) the

monomials that can occur in the expansion of

0@X
j

xj

1An

. Given such a mono-

mial xj1;1 � � � xj1;i1x
2
j2;1

� � � x2j2;i2 � � � x
l
jl;1

� � � xljl;il � ��, without regard to the
ordering among the xljl;1 � � � x

l
jl;il

for each l, how many times does it occur in

the expansion of

0@X
j

xj

1An

? Any xjl;i can be chosen from any one of the n

factors

0@X
j

xj

1A of

0@X
j

xj

1An

, but no two xjl;i in the same monomial can be

chosen from the same factor

0@X
j

xj

1A of

0@X
j

xj

1An

. So each such occurence

of the monomial in the expansion of

0@X
j

xj

1An

is an assignment for all l of a
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unique l-element subset of the n factors in

0@X
j

xj

1An

to each particular xljl;i

in the monomial. Those are the factors which contribute that particular xljl;i
to the monomial. The expression n!Y

l

l!il
for "n-choose :::; l; l; :::; l; :::" where l

runs over all positive integers and each l occurs il times is the correct count-
ing of the number of ways to make such an assignment without regard to the
ordering among the xljl;1 � � � x

l
jl;il

for each l. However, for each l, there are il!
distinct permutations of each fjl;i : 1 � i � ilgl so dividing by each il! gives the
correct count when each permutation is treated as creating a distinct monomial

in
XII

.

Remark 5 The coe¢ cient n!Y
l

il!l!
il

in Lemma 4 is the same as appears in Faá

di Bruno�s formula for the chain rule for higher derivatives, and comes from
the same combinatorics.

Lemma 6 If either 1 or 2

1. xj � 0 almost always for all j, or

2.

E
�XII ���xj1;1 � � � xj1;i1x2j2;1 � � � x2j2;i2 � � � xljl;1 � � � xljl;il � �����

�
<1,

for all sets of indexed non-negative integers

(
il :
X
l

l � il = n
)
where, for

each such filg,
XII

is taken over all indexed sets of permutations of sets

of non-negative integers
�
fjl;i : 1 � i � ilgl

	
in which no two integers jl;i,

jl0;i0 are equal,

then

E

240@X
j

xj

1An35 =
=
XI n!Y

l

il!l!il

XII
�fjl;igE

�
xj1;1

�
���E

�
xj1;i1

�
E
h
x2j2;1

i
���E

h
x2j2;i2

i
���E

h
xljl;1

i
���E

h
xljl;il

i
���

where for each
�
fjl;i : 1 � i � ilgl

	
, in which no two integers jl;i, jl0;i0 are equal,

�fjl;ig is the covariation coe¢ cient de�ned by

E
h
xj1;1 � � � xj1;i1x

2
j2;1 � � � x

2
j2;i2

� � � xljl;1 � � � x
l
jl;il

� ��
i

= �fjl;igE
�
xj1;1

�
� � � E

�
xj1;i1

�
E
h
x2j2;1

i
� � � E

h
x2j2;i2

i
� � � E

h
xljl;1

i
� � � E

h
xljl;il

i
� ��
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Proof. Taking E on both sides of Lemma 4, either hypothesis 1 or hypothesis
2 of Lemma 6 allows us to move E inside the summation by Fubini�s theorem.
For hypothesis 2 this requires the observation that

XI
is a �nite sum.

Lemma 7 If for each filg in
XI

in Lemma 6 the �fjl;ig in
XII

are all equal,
that is if all covariation coe¢ cients of all orders among the fxjg are global, not
depending upon the speci�c subscripts j and j0 for any two distinct xj and xj0 ,
then

E

240@X
j

xj

1An35 =
=
XI n!Y

l

il!l!il
�filg

XII
E
�
xj1;1

�
���E

�
xj1;i1

�
E
h
x2j2;1

i
���E

h
x2j2;i2

i
���E

h
xljl;1

i
���E

h
xljl;il

i
���

=
XI n!Y

l

il!l!il
�filg

8><>:
Y
l

0@X
j

E
�
xlj
�1Ail

�
XIII

9>=>;
where �filg = the common value of the �fjl;ig in

XII
as de�ned in Lemma 6

and
XIII

represents the sum of all monomial terms in
Y
l

0@X
j

E
�
xlj
�1Ail

,

with the same coe¢ cients as in
Y
l

0@X
j

E
�
xlj
�1Ail

, that contain two or more

matching subscripts, i.e. that contain factors E
�
xlj
�
E
h
xl

0

j0

i
with j = j0.

Proof. Factor �filg = �fjl;ig out of
XII

in Lemma 6. Then note that the

monomials in
XII

are identical with the monomials in the complete expansion

of
Y
l

0@X
j

E
�
xlj
�1Ail

that contain no matching subscripts, i.e. that contain no

factors E
�
xlj
�
E
h
xl

0

j0

i
with j = j0.

XIII
can be built up using expressions similar to

Y
l

0@X
j

E
�
xlj
�1Ail

but

containing monomials with groups of, �rst, two or more matching subscripts,
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then with groups of three or more matching subscripts, etc and �nally
X
l

il

matching subscripts (there cannot be any more than that matching becauseX
l

l � il = n.)

These expressions containing monomials with groups of matching subscripts

that go into
XIII

will take the form
Y
m

24X
j

 Y
l

E
�
xlj
�il;m!35jm where double-

indexed sets of non-negative integer exponents fil;mg de�ne groups of matching
subscripts j in sub-monomials

Y
l

E
�
xlj
�il;m within the monomials of

Y
m

24X
j

 Y
l

E
�
xlj
�il;m!35jm . Sets of non-negative integer outside exponents

fjmg serve to allow us to require the sets of inside exponents fil;mg to be
unique.
For each combined set of exponents fjm; il;mg we require that

X
m

jm�il;m = il

for each l in order to make sure that we are generating monomials in
XIII

that

correspond to monomials in
Y
l

0@X
j

E
�
xlj
�1Ail

. With one exception there will

be such monomials in
XIII

for each unique set of exponents fjm; il;mg meeting
the requirement

X
m

jm � il;m = il for each l.

The exception is the unique set of such exponents with jl = il and il;l = 1
for all l, and all other il;m = 0. In this case,

Y
m

24X
j

 Y
l

E
�
xlj
�il;m!35jm =Y

l

0@X
j

E
�
xlj
�1Ail

itself.

This contains some monomials where no two subscripts match, hence which are

not contained in
XIII

.

Lemma 8 If we maintain the convention that each permutation of fjl;i : 1 � i � ilgl
for each l, where no two integers jl;i, jl0;i0 are equal, denotes a distinct mono-

mial E
�
xj1;1

�
� � �E

�
xj1;i1

�
E
h
x2j2;1

i
� � �E

h
x2j2;i2

i
� � �E

h
xljl;1

i
� � �E

h
xljl;il

i
� �� then

the coe¢ cient of that monomial in
Y
l

0@X
j

E
�
xlj
�1Ail

will be 1.
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Proof. There are exactly
Y
l

il! such permutations and exactly that many

distinct monomials in
Y
l

0@X
j

E
�
xlj
�1Ail

meeting the convention.

Lemma 9 For each m, the number of subscripts matched to some other sub-

script in each monomial of
X
j

 Y
l

E
�
xlj
�il:m! is

 X
l

il;m � 1
!
+

+ 1 ^
 X

l

il;m � 1
!
+

and there are jm groups of such matching subscripts in each monomial of24X
j

 Y
l

E
�
xlj
�il:m!35jm

.

Proof. For each m, if
X
l

il;m = 0 or 1 it doesn�t create a match. If
X
l

il;m > 1

it creates
X
l

il;m matched subscripts in the sub-monomial
Y
l

E
�
xlj
�il:m . For

each m there are jm such groups of matched subscripts in each monomial of24X
j

 Y
l

E
�
xlj
�il:m!35jm .

Remark 10 There will be larger groups of matching subscripts than the mini-

mum set by Lemma 9 in some monomials of
Y
m

24X
j

 Y
l

E
�
xlj
�il:m!35jm "by

accident" in multiplying across the separate

24X
j

 Y
l

E
�
xlj
�il:m!35 factors.

For the monomials of
Y
l

0@X
j

E
�
xlj
�1Ail

the minimum set by Lemma 9 is 0,

which is consistent with Lemma 8.

Remark 11 Since the set of monomials involving groups of three or more
matching subscripts forms a proper subset of the set of monomials involving

groups of two or more matching subscripts, and so on, as we build up
XIII

with terms to eliminate monomials with groups of, say, k matching subscripts
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we will have to adjust systematically for the presence of monomials with groups

of k matching subscripts that we already put into
XIII

"by accident" while
putting in terms to eliminate monomials with groups of k0 matching subscripts
for each 2 � k0 < k.

We now will derive a coe¢ cient to put on each term
Y
m

24X
j

 Y
l

E
�
xlj
�il:m!35jm

in order to achieve in
XIII

an exact elimination of all and only all monomials

in
Y
l

0@X
j

E
�
xlj
�1Ail

that have any matching subscripts. This will require two

separate analyses: �rst, a count of the number of times each pattern of matched

subscripts occurs in
Y
l

0@X
j

E
�
xlj
�1Ail

and, second, an adjustment factor to

associate with each such occurrence to account for all of the "by accident" oc-
currences generated by the elimination process itself as described in Remark
11. We can start, however, with the simplest term, one that requires no such
adjustment factor.

Remark 12 By Lemma 8 if we put the coe¢ cient 1 on the term
Y
l

0@X
j

E
�
xlj
�1Ail

then we can rewrite the conclusion of Lemma 7 to read

E

240@X
j

xj

1An35 =XI n!Y
l

il!l!il
�filg

�XIV
�

where for each filg in
XI

we let
XIV

represent a sum of terms of the

form
Y
m

24X
j

 Y
l

E
�
xlj
�il:m!35jm with a coe¢ cient on each term chosen so

that across
XIV

all occurences of monomials with any matching subscripts are
eliminated, leaving onlyXIV

=
XII

E
�
xj1;1

�
���E

�
xj1;i1

�
E
h
x2j2;1

i
���E

h
x2j2;i2

i
���E

h
xljl;1

i
���E

h
xljl;il

i
���

with monomials having no matching subscripts and with separate monomials for

each permutation of the the subscripts within each set
n
E
h
xljl;i

i
: 1 � i � il

o
.
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Lemma 13 For each set of indexed non-negative integers

(
il :
X
l

l � il = n
)

and each set of indexed non-negative integers

(
jm; il;m :

X
m

jm � il;m = il for all l
)
,

the monomial Y
m

jmY
k=1

Y
l

E
h
xljm;k

iil;m
with no two subscripts jm;k, jm0;k0 equal occurs

1Y
m

jm!

Y
l

il!Y
m

il;m!jm

times in
Y
l

0@X
j

E
�
xlj
�1Ail

, treating each permutation of the subscripts for a

givenm as a separate monomial. Taken over all such fjm; il;mg this will exhaust

all the monomials in
Y
l

0@X
j

E
�
xlj
�1Ail

with each permutation of subscripts for

each l treated as a separate monomial.

Proof. In similar fashion to the proof of Lemma 4 if we were to treat permuta-
tions of the subscripts as yielding the same monomial then the proper count for
each l, for each given jm;k, would be "il-choose :::; il;m; :::; il;m; :::" where each
il;m occurs jm times. That gives a count of

il!Y
m

il;m!jm

occurences in each

0@X
j

E
�
xlj
�1Ail

. But this needs to be taken independently

over all l making the count equal toY
l

il!Y
m

il;m!jm

occurences. But we want to treat permutations of the subscripts for a given

m as yielding di¤erent monomials. For a given m; each
jmY
k=1

Y
l

E
h
xljm;k

iil;m
has the same subscript in all of its factors for each given k. The only room

9



for permutation of subscripts is by permuting fjm;kg over k for each �xed m.
There are jm! such permutations for each m since k runs from 1 to jm. So
dividing by jm! for each m gives the correct count

1Y
m

jm!

Y
l

il!Y
m

il;m!jm

for the number of occurences of the original monomial

Y
m

jmY
k=1

Y
l

E
h
xljm;k

iil;m

This exhausts all the monomials in
Y
l

0@X
j

E
�
xlj
�1Ail

because for each m sepa-

rately we have included all permutations of the fjm;kg, which certainly includes
all permutations of the subscripts for each l.

Remark 14 Lemma 13 tells us how many times the term

�
Y
m

24X
j

 Y
l

E
�
xlj
�il:m!35jm

would have to occur in
XIV

in Remark 12 to eliminate matching subscripts in

Y
l

0@X
j

E
�
xlj
�1Ail

, if only we could ignore "by accident" terms as described in

Remark 11

It remains, �nally, to determine a factor, other than �1 perhaps, to put on
each such occurrence of each term

Y
m

24X
j

 Y
l

E
�
xlj
�il:m!35jm

in
XIV

to adjust for the "by accident" terms as described in Remark 11 so
that each occurrence of each monomial within any of the

Y
m

24X
j

 Y
l

E
�
xlj
�il:m!35jm

that contains any matching subscripts is exactly eliminated within
XIV

in
Remark 12. To do so requires yet more notation.
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Notation 15 Let the set of non-negative integers ffkg indexed by k � 2 repre-
sent any monomial which for each k � 2 has exactly fk groups of k subscripts
matching each other. To be clear, within each such group of k the subscripts
match each other, but they do not match any other subscripts in the monomial,
not even the subscripts in the other groups of k subscripts if fk happens to be
bigger than 1.

Example 16 Using Lemma 9, for the monomial in Lemma 13 for each k � 2,
fk =

XV
jm where

XV
runs over all m such that

X
l

il;m = k.

Lemma 17 In a sum over successive monomials with groups of increasing num-
bers of matching subscripts to eliminate all matching subscripts, as described in
Remark 11, a monomial whose subscript matching is represented by ffkg should
be given an adjustment factorY

k

h
(�1)(k�1) (k � 1)!

ifk
Proof. Proceed by induction on

X
k

fk � (k � 1) to show both that the adjust-

ment factor for a monomial represented by ffkg must be

Factor (ffkg) =
Y
k

h
(�1)(k�1) (k � 1)!

ifk
Equation (1)

and that

Y
k

0BBBBB@1 +
XV I k! 

k �
kX
l=2

l � il

!
!

kY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
fk

= 0

Equation (2)

where for each k the
XV I

is taken over all sets of non-negative integers indexed
by l � 2 (

il : 2 �
kX
l=2

l � il � k
)
:

For
X
k

fk � (k � 1) = 1, f2 = 1 must be the only non-zero fk so the required

adjustment factor is �1 because there is exactly f2 = 1 match that requires
elimination and there are no "by accident" occurrences of that match stemming
from eliminating monomials with fewer matches (there are no fewer matches
than this.)
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But in this caseY
k

h
(�1)(k�1) (k � 1)!

ifk
=
h
(�1)1 1!

i1
= �1

and
XV I

is over the single element i2 = 1 so

Y
k

0BBBBB@1 +
XV I k! 

k �
kX
l=2

l � il

!
!
kY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
fk

=
�
1 + (�1)1 1!

�1
= 0

verifying Equations (1) and (2) when
X
k

fk � (k � 1) = 1.

Now assume by induction that Equations (1) and (2) are correct for all ffkg
with

X
k

fk � (k � 1) smaller than the current
X
k

fk � (k � 1).

Then Factor(ffkg) for the current ffkg in the successive elimination of all
matches must be a sum containing four terms:

First, � 1 to eliminate the original copy of ffkg itself

Second, �
Y
k

0BBBBB@1 +
XV I k! 

k �
kX
l=2

l � il

!
!
kY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
fk

to eliminate copies of ffkg introduced "by accident" (as explained in
Remark 11) at earlier stages, with

X
k

fk � (k � 1) smaller than the

current value of
X
k

fk � (k � 1) . Each term in an additive expansion ofY
k

(�)fk represents a matching pattern in a monomial at such an earlier stage

whose elimination contributes copies of ffkg "by accident". The coe¢ cients
count the number of times each such monomial occurred in the earlier stages.

For each block of k the count for each

(
il :

kX
l=2

l � il � k
)
is "k-choose

:::; l; :::; l; ::: with each l occurring il times" divided by
Y
l

il! permutations

12



because we treat each permutation of subscripts as a distinct monomial.

By induction, the
Y
l

(�1)il(l�1) (l � 1)!il are the factors for each occurrence of

each such earlier matching pattern, hence also the number of copies of ffkg
introduced "by accident" for each such occurence.

Third, + 1 because
Y
k

1fk should not have been subtracted. Each 1 is

just a place-holder allowing
Y
k

(�)fk to select all matching patterns at earlier

stages that introduced copies of ffkg "by accident."

Fourth,+
Y
k

h
(�1)(k�1) (k � 1)!

ifk
because

Y
k

�
the ik = 1 term in

XV I
�fk

should not have been subtracted. It describes the same matching pattern

as ffkg , not some earlier stage.

Putting these four terms together, noting that the �rst and third cancel each
other,

Factor (ffkg) =
Y
k

h
(�1)(k�1) (k � 1)!

ifk

�
Y
k

0BBBBB@1 +
XV I k! 

k �
kX
l=2

l � il

!
!
kY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
fk

Equation (3)

There now are two cases: (1)
X
k

fk > 1 or (2)
X
k

fk = 1.

Case (1): If
X
k

fk > 1 then for each k

0BBBBB@1 +
XV I k! 

k �
kX
l=2

l � il

!
!
kY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA = 0

by induction since each represents Equation (2) for a set filg withX
l

il � (l � 1) <
X
k

fk � (k � 1). This establishes Equation (2) for ffkg which

in turn by Equation (3) establishes Equation (1) for ffkg.

13



Case (2): If
X
k

fk = 1 then let k be the lone index for which fk = 1, all the

others being = 0. Then Equation (3) becomes

Factor (ffkg) =

= �

0BBBBB@1 +
XV II k! 

k �
k�1X
l=2

l � il

!
!
k�1Y
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
where

XV II
is taken over all sets of non-negative integers indexed by l � 2(

il : 2 �
k�1X
l=2

l � il � k
)
.

Note the di¤erence to
XV I

where the indices l run up to k, not k�1, because the

ik = 1 term is cancelled for
XV II

by the (�1)k (k � 1)! term at the beginning
of Equation (3).
For each such set filg use a partition of unity

1

k

 
k �

k�1X
m=2

m � im

!
+
1

k

k�1X
m=2

m � im = 1

to write
Factor (ffkg) =

= �

0BBBBBB@
1 +

XV II
k!0B@k�k�1X

l=2

l�il

1CA! k�1Y
l=2

il!l!
il

�

 
1
k

 
k �

k�1X
m=2

m � im

!
+ 1

k

k�1X
m=2

m � im

!Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCCA

= �

0BBBBB@1 +
XV III (k � 1)! 

k � 1�
k�1X
l=2

l � il

!
!
k�1Y
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
�

k�1X
m=2

m

k

XV II
im

k! 
k �

k�1X
l=2

l � il

!
!
k�1Y
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

14



where the
XV III

in the �rst term is taken over all sets of non-negative integers
indexed by l � 2 (

il : 2 �
k�1X
l=2

l � il � k � 1
)

because when
k�1X
m=2

m � im = k the partition of unity becomes 0 + 1, and where

the changed order of summation in the second term is justi�ed by the fact that
im = 0 precisely when it would otherwise be illegitimate.
Now0BBBBB@1 +

XV III (k � 1)! 
k � 1�

k�1X
l=2

l � il

!
!
k�1Y
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA = 0

by induction because it is just Equation (2) for the case fk�1 = 1, all other = 0.
That leaves

Factor (ffkg) =

= �
k�1X
m=2

m

k

XV II
im

k! 
k �

k�1X
l=2

l � il

!
!
k�1Y
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

= �
k�1X
m=2

(k � 1)!
(m� 1)! (k �m)! (�1)

m�1
(m� 1)! �0BBBBB@1 +

XIX (k �m)! 
k �m�

k�mX
l=2

l � il

!
!
k�mY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA
where for each m the

XIX
is taken over all sets of non-negative integers(

il : 2 �
k�mX
l=2

l � il � k �m
)
,

where we have factored out k!
m!(k�m)! (�1)

m�1
(m� 1)! from each term of

XV II
,

lowered the corresponding im by 1, fortunately the im in each term of
XV II

has the e¤ect of dividing the corresponding im! in the denominator down to

15



(im � 1)! which is just what�s needed in lowering the im by 1, the upper limit

of the index sums for
XIX

are reduced from k in
XV II

to k � m as im is
lowered by 1, l can run up to no more than k�m because anything higher would
violate the k �m upper limit on the index sum, and the 1 term picks up the

only ik�1 = 1 term from
XV II

so that 2 �
k�mX
l=2

l � il � k �m in the de�nition

of
XIX

makes sense in all cases.
Now, for 2 � m � k � 20BBBBB@1 +

XIX (k �m)! 
k �m�

k�mX
l=2

l � il

!
!
k�mY
l=2

il!l!il

Y
l

(�1)il(l�1) (l � 1)!il

1CCCCCA = 0

by induction since it is just Equation (2) for the case fk�m = 1, all other = 0,
so �nally only the m = k � 1 term remains

Factor (ffkg) = � (k � 1)!
(k � 2)! (1)! (�1)

k�2
(k � 2)!

= (�1)k�1 (k � 1)!

which establishes Equation (1) in Case (2). By Equation (3), this establishes
Equation (2) for Case (2) and the induction for Lemma 17 is complete.

The proof of Theorem 1 is now complete, combining Lemma 6, Lemma 7,
Remark 12, Lemma 13, Remark 14, Lemma 9 (see Example 16) and Lemma 17.
Note that

Y
l

il! factors in numerator and denominator cancel out when Lemma

13 is combined with Remark 12 or Lemma 7, so that an exponent of jm can be
pulled out of everything except the jm!.

Example 18 What does Theorem 1 tell us to do in the original case n = 2?
Use a tabular format

l = 2 1 2 1 jm m
il = 1 0 il;m = [ 1 0 1 1 ]

0 2 [ 0 2 1 1 ]
[ 0 1 2 1 ]

and read o¤the terms from

the groupings on the right, using both the left and the right for coe¢ cients in
Theorem 1 as needed. The result as expected is

E

264
0@X

j

xj

1A2
375 =

0@X
j

E
�
x2j
�1A+2�f0;2g

8><>:
0@�1

2

X
j

E [xj ]2
1A+ 1

2

0@X
j

E [xj ]

1A2
9>=>;
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Example 19 What about n = 3?

l = 3 2 1 3 2 1 jm m
il = 1 0 0 il;m = [ 1 0 0 1 1 ]

0 1 1 [ 0 1 1 1 1 ]
d 0 1 0 1 1 e
b 0 0 1 1 2 c

0 0 3 [ 0 0 3 1 1 ]
d 0 0 2 1 1 e
b 0 0 1 1 2 c
[ 0 0 1 3 1 ]

, already much more

complex with six groupings of il;m. The resulting six term expression is

E

264
0@X

j

xj

1A3
375 =

=

0@X
j

E
�
x3j
�1A

+3�f0;1;1g

240@�X
j

E
�
x2j
�
E [xj ]

1A+
0@X

j

E
�
x2j
�1A0@X

j

E [xj ]

1A35

+6�f0;0;3g

26666664

0@ 1
3

X
j

E [xj ]3
1A+

0@� 1
2

X
j

E [xj ]2
1A0@X

j

E [xj ]

1A
+ 1
6

0@X
j

E [xj ]

1A3

37777775
where

E
�
x2jxk

�
= �f0;1;1gE

�
x2j
�
E [xk] for all j 6= k

E [xixjxk] = �f0;0;3gE [xi]E [xj ]E [xk] for all i 6= j 6= k

With care, this result can be veri�ed by algebraic calculations independent
of the tabular display.

17



Example 20 For n = 4 the combinatorics jump to fourteen groupings of il;m

and fourteen terms in the expression for E

264
0@X

j

xj

1A4
375.

l = 4 3 2 1 4 3 2 1 jm m
il = 1 0 0 0 il;m = [ 1 0 0 0 1 1 ]

0 1 0 1 [ 0 1 0 1 1 1 ]
d 0 1 0 0 1 1 e
b 0 0 0 1 1 2 c

0 0 2 0 [ 0 0 2 0 1 1 ]
[ 0 0 1 0 2 1 ]

0 0 1 2 [ 0 0 1 2 1 1 ]
d 0 0 1 1 1 1 e
b 0 0 0 1 1 2 c
d 0 0 1 0 1 1 e
b 0 0 0 2 1 2 c
d 0 0 1 0 1 1 e
b 0 0 0 1 2 2 c

0 0 0 4 [ 0 0 0 4 1 1 ]
d 0 0 0 3 1 1 e
b 0 0 0 1 1 2 c
[ 0 0 0 2 2 1 ]
d 0 0 0 2 1 1 e
b 0 0 0 1 2 2 c
[ 0 0 0 1 4 1 ]
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E

264
0@X

j

xj

1A4
375 =

=

0@X
j

E
�
x4j
�1A

+4�f0;1;0;1g

240@�X
j

E
�
x3j
�
E [xj ]

1A+
0@X

j

E
�
x3j
�1A0@X

j

E [xj ]

1A35
+6�f0;0;2;0g

264
0@�1

2

X
j

E
�
x2j
�21A+ 1

2

0@X
j

E
�
x2j
�1A2

375

+12�f0;0;1;2g

26666664

0@X
j

E
�
x2j
�
E [xj ]2

1A+
0@�X

j

E
�
x2j
�
E [xj ]

1A0@X
j

E [xj ]

1A
+

0@X
j

E
�
x2j
�1A0@� 1

2

X
j

E [xj ]2
1A+

0@X
j

E
�
x2j
�1A 1

2

0@X
j

E [xj ]

1A2

37777775

+24�f0;0;0;4g

26666666666664

0@� 1
4

X
j

E [xj ]4
1A+

0@ 1
3

X
j

E [xj ]3
1A0@X

j

E [xj ]

1A
+ 1
2

0@� 1
2

X
j

E [xj ]2
1A2

+

0@� 1
2

X
j

E [xj ]2
1A 1

2

0@X
j

E [xj ]

1A2

+ 1
24

0@X
j

E [xj ]

1A4

37777777777775
It is quite tedious and di¢ cult to verify this result by algebraic calculations

independent of the tabular display. Clearly it gets out of hand to try to write

out the expression for E

240@X
j

xj

1An35 as n increases. The logic for the tabular
displays for il and il;m, however, can with some care be programmed for general

n, so Theorem 1 provides an algorithm to compute E

240@X
j

xj

1An35 whenever
the �filg are computable and the

X
j

Y
l

E
�
xlj
�il;m summable.
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