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Abstract

The tail distortion risk measure at level p was �rst introduced in Zhu and Li (2012),
where the parameter p 2 (0; 1) indicates the con�dence level. They established �rst-
order asymptotics for this risk measure, as p " 1, for the Fréchet case. In this paper,
we extend their work by establishing both �rst-order and second-order asymptotics
for the Fréchet, Weibull and Gumbel cases. Numerical studies are also carried out to
examine the accuracy of both asymptotics.
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1 Introduction

Let X be a real-valued random variable, with distribution function F = 1 � F on R =

(�1;1). Let g(�) : [0; 1]! [0; 1] be a distortion function, namely, a nondecreasing function
with g(0) = 0 and g(1) = 1. The distortion risk measure of X associated with g(�) is de�ned
as

Dg[X] =

Z 0

�1

�
g
�
F (x)

�
� 1
�
dx+

Z 1
0

g(F (x))dx:

This risk measure can be viewed as a distorted expectation of X in the sense of Choqet
integral; see Denneberg (1994). The distortion risk measure was �rst introduced by Wang

�E-mail: fan-yang-2@uiowa.edu; Cell: 319-471-0811

1



(1996) and has been applied to deciding insurance premiums, capital requirements and cap-
ital allocations. For more details, the reader is referred to Wang (2002), Valdez and Chernih
(2003) and Tsanakas (2004), among others. Important properties of the distortion risk mea-
sure, such as coherence and second-order stochastic dominance, have been well studied; see,
for example, Hardy and Wirch (2003) and Dhaene et al. (2006).
The distortion risk measure takes into account both loss and pro�t sides. Zhu and Li

(2012) proposed the tail distortion risk measure, which focuses on the loss side only. With
a distortion function g(�), introduce gp(�) with 0 < p < 1 as

gp(u) =

(
g
�

u
1�p

�
; 0 � u < 1� p;

1; 1� p � u � 1;

which again is a distortion function. Then the tail distortion risk measure at level p of a risk
variable X is de�ned as

Tp[X] =

Z 0

�1

�
gp
�
F (x)

�
� 1
�
dx+

Z 1
0

gp
�
F (x)

�
dx:

Note that this de�nition di¤ers from the one given by Zhu and Li (2012), but they are
identical when the risk variable X is continuous.
Clearly, if g(�) is concave, then gp(�) is concave as well, which leads to the coherence

of the tail distortion risk measure. For the special case with g(x) = x and a continuous
risk variable X, for p > F (0) the tail distortion risk measure becomes the well-known the
expected shortfall, Tp[X] = E [XjX > F (p)], where, and throughout the paper,

F (p) = inffx : F (x) � pg

is the value at risk of X or the quantile of F with the usual convention inf ? =1.
De�ne the function U(�) as the quantile function of 1=F , namely,

U(t) =

�
1

F

� 
(t) = F 

�
1� 1

t

�
:

Then we can rewrite Tp[X] as

Tp[X] =

Z 1

0

F (1� q)dgp(q) =
Z 1

0

U

�
1

q(1� p)

�
dg(q): (1.1)

Relation (1.1) will be the starting point of our derivation of asymptotics for Tp[X].
In the de�nition of tail distortion risk measure, the parameter p clearly represents the

con�dence level. Nowadays, people are keen to measuring the tail area of a risk. The tail
area of a risk corresponds to a large loss, whose occurrence is often companied by disastrous
consequences. Therefore, in this paper we will study the asymptotic behavior of the tail
distortion risk measure as p " 1. From this point of view, the use of extreme value theory
becomes appropriate.
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For a risk variable X with distribution function F , we denote by x̂ its upper endpoint
F (1). From (1.1), we see that Tp[X] " x̂ if and only if p " 1. We will assume that Pr(X =

x̂) = 0 because otherwise Tp[X] = x̂ when p is close to 1. We will consider risk variables with
distributions from the max-domain of attraction of an extreme value distribution. For the
Fréchet and Gumbel cases with x̂ =1, we derive �rst-order asymptotics for Tp[X] diverging
to 1 as p " 1. For the Weibull and Gumbel cases with x̂ < 1, we derive �rst-order
asymptotics for x̂ � Tp[X] converging to 0 as p " 1. Furthermore, we derive second-order
asymptotics for the three cases. In this paper, we follow the methodology of Mao and Hu
(2012), who studied the second-order properties of Haezendonck�Goovaerts risk measure.
The rest of this paper consists of four sections. In section 2, we introduce the extreme

value theory. In section 3, we derive �rst-order asymptotics for Tp[X] for the Fréchet, Weibull
and Gumbel cases separately. In section 4, we derive second-order asymptotics for Tp[X]
for all three cases. In section 5, we numerically examine the accuracy of �rst-order and
second-order asymptotics.

2 Extreme Value Theory

A distribution function F is said to belong to the max-domain of attraction of a distribution
function G, denoted by F 2 MDA(G), if for a sequence of independent and identically
distributed random variables, fXn; n = 1; 2; : : :g, with common distribution function F , the
normalized block maximum Mn = max1�i�nXi, has a distribution weakly converging to G.
The classical Fisher-Tippett theorem (see Fisher and Tippett (1928)) states that G has to
be one of the Fréchet, Weibull and Gumbel distributions whose standard forms are given by,
respectively,
��(x) = exp f�x��g for x > 0,
	�(x) = exp f� jxj�g for x � 0, and
�(x) = exp f�e�xg for x 2 R.
It is usually convenient to characterize the three max-domains of attraction in terms of

regular variation; see, for example, Embrechts et al. (1997). A positive measurable function
f(�) is said to be regularly varying at1, with a regularity index � 2 R, denoted by f(�) 2 R�,
if

lim
t!1

f(tx)

f(x)
= x�; x > 0: (2.1)

For the extreme case of (2.1) with � = �1, the function f(�) is said to be rapidly varying
at 1, denoted by f(�) 2 R�1.
Using the concept of extended regular variation leads to a uni�ed description for the

three max-domains of attraction. By de�nition, a positive measurable function f(�) is said
to be extended regularly varying with index 
 2 R, denoted by f(�) 2 ERV
, if there exists
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an auxiliary function a(�) > 0 such that, for all x > 0,

lim
t!1

f(tx)� f(t)
a(t)

=
x
 � 1



; (2.2)

where the right-hand side is interpreted as log x when 
 = 0. We will use this usual con-
vention and throughout the paper. The auxiliary function a(�) appearing in (2.2) is often
chosen to be

a0(t) =

8<:

f(t); 
 > 0;
�
(f(1)� f(t)); 
 < 0;

f(t)� t�1
R t
0
f(s)ds; 
 = 0:

(2.3)

Note that for 
 = 0, if f(1) = 1 then a0(t) = o(f(t)) as t ! 1 while if f(1) < 1 then
a0(t) = o(f(1)� f(t)) as t!1. Theorem 1.1.6 of de Haan and Ferreira (2006) essentially
proves that F 2 MDA(G
) if and only if U 2 ERV
, where

G
 =

8<:
�1=
; 
 > 0;
	�1=
 ; 
 < 0;
�; 
 = 0;

and U is the quantile function of 1=F as de�ned above.
Very often we need not only to derive �rst-order asymptotics such as (2.1) and (2.2) but

also to know their convergence speed. For the latter purpose, we introduce the concepts of
second-order regular variation and second-order extended regular variation.
By de�nition, a positive measurable function f(�) is said to be second-order regularly

varying with �rst-order index 
 2 R and second-order index � � 0, denoted by f(�) 2 2RV
;�,
if there exists an auxiliary function A(�), which does not change sign eventually and converges
to 0, such that, for all x > 0,

lim
t!1

f(tx)
f(t)

� x


A(t)
= x


x� � 1
�

:

More generally, a positive measurable function f(�) is said to be second-order extended
regularly varying with �rst-order index 
 2 R and second-order index � � 0, denoted by
f(�) 2 2ERV
;�, if there exist a �rst-order auxiliary function a(�) and a second-order auxiliary
function A(�), where A(�) does not change sign eventually and converges to 0, such that, for
all x > 0,

lim
t!1

f(tx)�f(t)
a(t)

� x
�1



A(t)
=
1

�

�
x
+� � 1

 + �

� x

 � 1



�
; x > 0: (2.4)

Some immediate explanations of (2.4) follow. The right-hand side of (2.4), written asH
;�(x),
is equal to

H
;�(x) =

8>><>>:
1
�

�
x
+��1

+�

� x
�1



�
; � 6= 0;

1



�
x
 log x� x
�1




�
; � = 0; 
 6= 0;

1
2
(log x)2 ; 
 = � = 0:
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In (2.4), a(�) is itself second-order regularly varying, a(�) 2 2RV
;� with auxiliary function
A(�) 2 R
. The two auxiliary functions a(�) and A(�) are unique up to asymptotic equiv-
alence. Moreover, according to Corollary 2.3.5 of de Haan and Ferreira (2006), if a(�) and
A(�) are chosen appropriately, then H
;�(x) is reduced to 	
;�(x) as

	
;�(x) =

8><>:
x
+��1

+�

; � < 0;
1


x
 log x; 
 6= � = 0;

1
2
(log x)2 ; 
 = � = 0:

(2.5)

3 First-order Asymptotics

Firstly, we derive �rst-order asymptotics for the tail distortion risk measure of a general risk
variable X.

Theorem 3.1 Let X be a random variable with Pr(X = x̂) = 0. Assume that U 2 ERV

with 
 2 R and the �rst-order auxiliary function a0(�). In case 
 � 0, assume thatR1
1
g
�
x�1=(
+�)

�
dx <1 for some � > 0. Then when x̂ =1

Tp[X] � F (p) + a0
�

1

1� p

�Z 1

0

q�
 � 1



dg(q); (3.1)

when x̂ <1
x̂� Tp[X] � x̂� F (p)� a0

�
1

1� p

�Z 1

0

q�
 � 1



dg(q): (3.2)

Proof. By Theorem B.2.18 in de Haan and Ferreira (2006), there exists some 0 < p0 =

p0(�) < 1 such that for p0 � p < 1 and 0 < q < 1,������
U
�

1
q(1�p)

�
� U

�
1
1�p

�
a0

�
1
1�p

� � q
�
 � 1



������ � q�
��:
Therefore, if the inequalitiesZ 1

0

q�
��dg(q) <1 for some � > 0; (3.3)

and Z 1

0

q�
 � 1



dg(q) <1 (3.4)

hold, then applying the dominated convergence theorem we obtain the following: for x̂ =1,

lim
p"1

Z 1

0

U
�

1
q(1�p)

�
� U

�
1
1�p

�
a0

�
1
1�p

� dg(q) =

Z 1

0

q�
 � 1



dg(q);
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which gives the desired result (3.1); similarly, for x̂ <1,

lim
p"1

Z 1

0

x̂� U
�

1
q(1�p)

�
�
�
x̂� U

�
1
1�p

��
a0

�
1
1�p

� dg(q) = �
Z 1

0

q�
 � 1



dg(q);

which gives the desired result (3.2).
It remains to verify inequalities (3.3) and (3.4). We consider the three cases, 
 < 0, 
 = 0

and 
 > 0, respectively. For 
 < 0, inequality (3.3) with � = �
=2 and inequality (3.4) hold
obviously. For 
 = 0, inequality (3.3) is veri�ed by using the condition

R1
1
g(x�1=�)dx <1

and integration by parts, while inequality (3.4) can be veri�ed asZ 1

0

log q�1dg(q) �
Z 1

0

q��dg(q) <1;

where the last step is due to (3.3). For 
 > 0, inequality (3.3) is veri�ed the same as before,
while inequality (3.4) is veri�ed asZ 1

0

q�
 � 1



dg(q) =
1




Z 1
1

g(x�1=
)dx � 1




Z 1
1

g(x�1=(
+�))dx <1:

This ends the proof.

Plugging the expression for a0(�) given in (2.3) into Theorem 3.1, we immediately obtain
�rst-order asymptotics for the three max-domains of attraction.

Corollary 3.1 Under the conditions of Theorem 3.1, we have the following:

(a) the Fréchet case: if 
 > 0 then Tp[X] � F (p)
�
1 +

R1
1
g
�
x�1=


�
dx
�
;

(b) the Weibull case: if 
 < 0 then x̂� Tp[X] � (x̂� F (p))
�
1�

R 1
0
g
�
x�1=


�
dx
�
;

(c) the Gumbel case: if 
 = 0 and x̂ =1 then Tp[X] � F (p), while if 
 = 0 and x̂ <1
then x̂� Tp[X] � x̂� F (p).

The result for the Fréchet case coincides with the one earlier obtained by Zhu and Li
(2012).

4 Second-order Asymptotics

To derive second-order asymptotics, similar as in the proof of Theorem 3.1, we need a uniform
inequality for the second-order extended regularly varying function, which is a restatement
of Theorem B.3.10 of de Haan and Ferreira (2006).
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Lemma 4.1 Suppose f(�) 2 2ERV
;� with 
 2 R, � � 0, �rst-order auxiliary function a(�)
and second-order auxiliary function A(�). Then there exist functions a0(�) and A0(�) such
that for every "; � > 0, some t0 = t0("; �) and all t; tx � t0,�����

f(tx)�f(t)
a0(t)

� x
�1



A0(t)
�	
;�(x)

����� � "max�x
+�+�; x
+���	 ;
where 	
;�(�) is de�ned in (2.5).

The next lemma establishes the relation between 2RV and 2ERV:

Lemma 4.2 Let X be a random variable and let � � 0.

(a) When 
 > 0, if U 2 ERV
 with auxiliary function a0(�) and U 2 2RV
;� with auxiliary
function A(�), then U 2 2ERV
;�;

(b) When 
 < 0, if U 2 ERV
 with auxiliary function a0(�) and x̂ � U 2 2RV
;� with
auxiliary function A(�), then x̂� U 2 2ERV
;�.

Proof. (a) In this case, a0(t) = 
U(t). We have

U(tx)�U(t)
a0(t)

� x
�1



A(t)
=
U(t)

U(tx)
U(t)

�1

U(t)

� x
�1



A(t)

=

U(tx)
U(t)

� x



A(t)

! x





x� � 1
�

; as t!1:

Thus, U 2 2ERV
;� by de�nition.
(b) In this case, a0(t) = �
(x̂ � U(t)). Similarly as above, we can prove that x̂ � U 2

2ERV
;� with the same limit function.

We conclude that, under the conditions of Lemma 4.2 and for 
 6= 0, the limit function
H
;�(x) in (2.4) is H
;�(x) = x




x��1
�
. Now we derive second-order asymptotics for the tail

distortion risk measure of a general variable X.

Theorem 4.1 Let X be a random variable with Pr(X = x̂) = 0. Assume that U 2 2ERV
;�
with 
 6= 0, � � 0, the �rst-order auxiliary function a0(�) and the second-order auxiliary
function A(�). In case 
 > 0, assume that

R1
1
g
�
x�1=(
+�)

�
dx < 1 for some � > 0. Then

when x̂ =1,

Tp[X] = F
 (p) + a0

�
1

1� p

�Z 1

0

q�
 � 1



dg(q)

+a0

�
1

1� p

�
A

�
1

1� p

��Z 1

0

H
;�
�
q�1
�
dg(q) + o(1)

�
; (4.1)
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when x̂ <1,

x̂� Tp[X] = x̂� F (p)� a0
�

1

1� p

�Z 1

0

q�
 � 1



dg(q)

�a0
�

1

1� p

�
A

�
1

1� p

��Z 1

0

H
;�
�
q�1
�
dg(q) + o(1)

�
: (4.2)

Proof. Note that H
;�(x) = x




x��1
�
= c�12

�
	
;�(x)� c1 x


�1



�
, where c1 = 
= (
 + �) and

c2 = 
�= (
 + �). Thus��������
U( 1

q(1�p))�U(
1

1�p)
a0( 1

1�p)
� q�
�1




A
�

1
1�p

� �H
;�(q�1)

��������
=

��������
U( 1

q(1�p))�U(
1

1�p)
a0( 1

1�p)
� q�
�1




A0

�
1
1�p

� �
A0

�
1
1�p

�
A
�

1
1�p

� �H
;�(q�1)
��������

�

��������
A0

�
1
1�p

�
A
�

1
1�p

�
0BB@

U( 1
q(1�p))�U(

1
1�p)

a0( 1
1�p)

� q�
�1



A0

�
1
1�p

� �	
;�
�
q�1
�1CCA
��������

+

������
0@A0

�
1
1�p

�
A
�

1
1�p

� � 1

c2

1A	
;� �q�1�+ c1
c2
� q
�
 � 1



������
� (1 + ") q�(
+�+�) + Cq�(
+�):

In the last step, we used Lemma 4.1 and the following facts: for every 
 6= 0 and � � 0,
there exists some positive constant C such that, for all 0 < q < 1,

q�(
+�) � 1

 + �

� Cq�(
+�+�); q�
 � 1



� Cq�(
+�); log q�1 < q��;

and A0(t) � A(t). Since one easily checks that
R 1
0
q�
��dg(q) < 1 hold for some � > 0,

applying the dominated convergence theorem we obtain the following: for x̂ =1,

lim
p"1

Z 1

0

U( 1
q(1�p))�U(

1
1�p)

a0( 1
1�p)

� q�
�1



A
�

1
1�p

� dg(q) =

Z 1

0

H
;�(q
�1)dg(q);

which gives (4.1); similarly, for x̂ <1,

lim
p"1

Z 1

0

x̂�U( 1
q(1�p))�(x̂�U(

1
1�p))

a0( 1
1�p)

+ q�
�1



A
�

1
1�p

� dg(q) = �
Z 1

0

H
;�(q
�1)dg(q);
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which gives (4.2). This ends the proof.

Next we develop second-order asymptotics for the three max-domains of attraction.

Corollary 4.1 Let X be a random variable with Pr(X = x̂) = 0. In case 
 � 0, assume
that

R1
1
g
�
x�1=(
+�)

�
dx <1 for some � > 0.

(a) The Fréchet case: If for some 
 > 0 and � � 0, U 2 ERV
 with auxiliary function
a0(�) and U 2 2RV
;� with auxiliary function A(�), then we have

Tp[X] = F
 (p)

�
1 +

Z 1
1

g
�
x�1=


�
dx

�
+ F (p)A

�
1

1� p

�
(I
;� + o(1)) ;

where

I
;� =

(
���1

�R 1
0
g
�
x�1=(
+�)

�
dx+

R1
1
g
�
x�1=


�
dx
�
; 
 � j�j ;

��1
R1
1

�
g
�
x�1=(
+�)

�
� g

�
x�1=


��
dx; 
 > j�j :

(b) The Weibull case: If for some 
 < 0 and � � 0, U 2 ERV
 with auxiliary function
a0(�) and x̂� U 2 2RV
;� with auxiliary function A(�), then we have

x̂� Tp[X] = (x̂� F (p))
�
1�

Z 1

0

g
�
x�1=


�
dx

�
+(x̂� F (p))A

�
1

1� p

��
��1
Z 1

0

�
g
�
x�1=


�
�g

�
x�1=(
+�)

��
dx+ o(1)

�
:

(c) The Gumbel case: Assume 
 = 0, � � 0 and U 2 ERV0 with auxiliary function a0(�).
De�ne I0;� by

I0;� =

(
���1

R 1
0
g
�
x�1=�

�
dx; � < 0;

1
2

R 1
0
g
�
e�
p
x
�
dx; � = 0:

(c1) When x̂ = 1 further assume U 2 2ERV0;� with auxiliary functions a0(�) and
A0(�). Then we have

Tp[X] = F
 (p)+a0

�
1

1� p

�Z 1
0

g
�
e�x
�
dx+a0

�
1

1� p

�
A0

�
1

1� p

�
(I0;� + o(1)):

(c2) When x̂ <1, further assume x̂�U 2 2ERV0;� with auxiliary functions a0(�) and
A0(�). Then we have

x̂� Tp[X] = x̂� F (p)� a0
�

1

1� p

�Z 1
0

g
�
e�x
�
dx

�a0
�

1

1� p

�
A0

�
1

1� p

�
(I0;� + o(1)) :

9



Proof. (a) By Lemma 4.2 and Theorem 4.1, we obtain

Tp[X] = F
 (p)

�
1 +

Z 1

0

q�
dg(q)

�
+ F (p)A

�
1

1� p

��Z 1

0

q�

q�� � 1
�

dg(q) + o(1)

�
:

Write I
;� =
R 1
0
q�
 q

���1
�
dg(q). If 
 � j�j, we continue to derive

I
;� = �
�1
Z 1

0

�
q�
�� � q�


�
dg(q) = ���1

�Z 1

0

g
�
x�1=(
+�)

�
dx+

Z 1
1

g
�
x�1=


�
dx

�
:

Notice that if 
 = �� then
R 1
0
g
�
x�1=(
+�)

�
dx = 0, where we used the dominated convergence

theorem. If 
 > j�j > 0 thenZ 1

0

q�

q�� � 1
�

dg(q) = ��1
Z 1
1

�
g
�
x�1=(
+�)

�
� g

�
x�1=


��
dx:

When � = 0, by the dominated convergence theorem we obtainZ 1

0

q�
 log q�1dg(q) = lim
�!0

Z 1

0

q�

q�� � 1
�

dg(q)

= lim
�!0

��1
Z 1
1

�
g
�
x�1=(
+�)

�
� g

�
x�1=


��
dx:

Thus for 
 > j�j � 0, we have I
;� = ��1
R1
1

�
g
�
x�1=(
+�)

�
� g

�
x�1=


��
dx.

(b) By Lemma 4.2 and Theorem 4.1, we obtain

x̂� Tp[X] = (x̂� F (p))
�
1�

Z 1

0

g
�
x�1=


�
dx

�
+(x̂� F (p))A

�
1

1� p

��Z 1

0

q�

q�� � 1
�

dg(q) + o(1)

�
:

Similar as in (a), it holds for all � � 0 thatZ 1

0

q�

q�� � 1
�

dg(q) = ��1
Z 1

0

�
g
�
x�1=


�
� g

�
x�1=(
+�)

��
dx:

Then we obtain the desired result.
(c) Notice that U 2 2ERV0;� with auxiliary functions a0(�) and A0(�) such that

lim
t!1

U(tx)�U(t)
a0(t)

� log x
A0(t)

=

� x��1
�
; � < 0;

1
2
(log x)2 ; � = 0:

Then the asymptotics for the Gumbel case can be derived similarly by using Lemma 4.1.
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5 Numerical Examples

In this section, we use R to numerically examine the accuracy of �rst-order and second-order
asymptotics derived in section 3 and 4.

Example 5.1 (The Fréchet case) Assume that F is a Pareto distribution given by

F (x) = 1�
�

�

x+ �

��
; x; �; � > 0:

Thus F 2 MDA(��) and U(t) = �(t
�1). Easily one can check U 2 ERV
 with 
 = 1=� and
U 2 2RV
;�
 with the second-order auxiliary function A(t) = 
t�
. We choose the distortion
function g(x) =

p
x and set � = 2:1 and � = 1. In Graph 5.1, we compare the exact value,

�rst-order and second-order asymptotic values for Tp[X] on the left and show the ratios of
exact value to both asymptotic values on the right. We �nd that both ratios converge to 1
as p " 1 and second-order asymptotics is more accurate than �rst-order asymptotics.

Graph 5.1 about here.

Example 5.2 (The Weibull case) Assume that F is a beta distribution with probability
density function given by

f(x) =
xa�1(1� x)b�1

B(a; b)
; 0 < x < 1; a; b > 0:

Thus, F 2 MDA(	b). One can check U 2 ERV
 with 
 = �1=b and 1 � U 2 2RV
;
 with
the second-order auxiliary function

A(t) = � a� 1
b(b+ 1)

�
t

bB(a; b)

�� 1
b

;

see, for example, Mao and Hu (2012). We choose the distortion function g(x) =
p
x and

set a = 2 and b = 6. Similarly as in Graph 5.1, we compare the exact value for 1 � Tp[x]
and its asymptotic values of beta distribution in Graph 5.2. Again we can see that both
ratios converge to 1 as p " 1 and second-order asymptotics is more accurate than �rst-order
asymptotics.

Graph 5.2 about here.

Example 5.3 (The Gumbel case) Assume that F is a Weibull distribution given by

F (x) = 1� e�(
x
b )

a

; x > 0; 0 < a < 1; b > 0:

Thus, F 2 MDA(�) and U(t) = b (log t)1=a. If we set a = 1=2 and b = 1, then U 2 2ERV0;0
with �rst-order auxiliary function a(t) = 2 log t and second-order auxiliary function A(t) =

11



1= log t. We choose the distortion function g(x) = x2. Similarly as in Graph 5.1, we compare
the exact value and asymptotic values for Tp[x] of Weibull distribution in Graph 5.3. Again
we �nd that both ratios converge to 1 as p " 1 and second-order asymptotics is more accurate
than �rst-order asymptotics.

Graph 5.3 about here.
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Graph 5.1  Frechet case: Pareto distribution
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Graph 5.2  Weibull case: Beta distribution
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Graph 5.3  Gumbel case: Weibull distribution




