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Abstract

The tail distortion risk measure at level p was first introduced in Zhu and Li (2012),
where the parameter p € (0,1) indicates the confidence level. They established first-
order asymptotics for this risk measure, as p T 1, for the Fréchet case. In this paper,
we extend their work by establishing both first-order and second-order asymptotics
for the Fréchet, Weibull and Gumbel cases. Numerical studies are also carried out to
examine the accuracy of both asymptotics.
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1 Introduction

Let X be a real-valued random variable, with distribution function ¥ = 1 — F on R =
(—o0,00). Let g(+) : [0,1] — [0, 1] be a distortion function, namely, a nondecreasing function
with g(0) = 0 and g(1) = 1. The distortion risk measure of X associated with g(+) is defined

as

D,[X] = / g (F(z)) — 1] dz + /Ooog(F(x))dx.

—0o0
This risk measure can be viewed as a distorted expectation of X in the sense of Choqet

integral; see Denneberg (1994). The distortion risk measure was first introduced by Wang
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(1996) and has been applied to deciding insurance premiums, capital requirements and cap-
ital allocations. For more details, the reader is referred to Wang (2002), Valdez and Chernih
(2003) and Tsanakas (2004), among others. Important properties of the distortion risk mea-
sure, such as coherence and second-order stochastic dominance, have been well studied; see,
for example, Hardy and Wirch (2003) and Dhaene et al. (2006).

The distortion risk measure takes into account both loss and profit sides. Zhu and Li
(2012) proposed the tail distortion risk measure, which focuses on the loss side only. With
a distortion function g(-), introduce g,(-) with 0 < p < 1 as

-1, 0<u<l1—np,
gp<u>—{~“’(1—p> !

17 1—p§U§17

which again is a distortion function. Then the tail distortion risk measure at level p of a risk

variable X is defined as

T[] = / (g (Fx)) — 1] da + /0 " g (F(2)) da.

—00

Note that this definition differs from the one given by Zhu and Li (2012), but they are
identical when the risk variable X is continuous.

Clearly, if ¢(-) is concave, then g,(-) is concave as well, which leads to the coherence
of the tail distortion risk measure. For the special case with g(z) = x and a continuous
risk variable X, for p > F(0) the tail distortion risk measure becomes the well-known the
expected shortfall, 7,,[X] = E[X|X > F* (p)], where, and throughout the paper,

F~(p) =inf{x : F(z) > p}

is the value at risk of X or the quantile of ' with the usual convention inf @ = oo.
Define the function U(-) as the quantile function of 1/F, namely,

v () 0 (121,

Then we can rewrite 7,[X] as

1 1
T,[X] :/0 F=(1 = q)dg,(q) :/o U (ﬁ) dg(q). (1.1)
Relation (1.1) will be the starting point of our derivation of asymptotics for 7},[.X].

In the definition of tail distortion risk measure, the parameter p clearly represents the
confidence level. Nowadays, people are keen to measuring the tail area of a risk. The tail
area of a risk corresponds to a large loss, whose occurrence is often companied by disastrous
consequences. Therefore, in this paper we will study the asymptotic behavior of the tail
distortion risk measure as p T 1. From this point of view, the use of extreme value theory

becomes appropriate.



For a risk variable X with distribution function F', we denote by & its upper endpoint
F—(1). From (1.1), we see that T,[X] T 2 if and only if p T 1. We will assume that Pr(X =
Z) = 0 because otherwise T,,[X] = & when p is close to 1. We will consider risk variables with
distributions from the max-domain of attraction of an extreme value distribution. For the
Fréchet and Gumbel cases with & = oo, we derive first-order asymptotics for 7,,[X] diverging
to oo as p T 1. For the Weibull and Gumbel cases with & < oo, we derive first-order
asymptotics for & — T},[X] converging to 0 as p T 1. Furthermore, we derive second-order
asymptotics for the three cases. In this paper, we follow the methodology of Mao and Hu
(2012), who studied the second-order properties of Haezendonck—Goovaerts risk measure.

The rest of this paper consists of four sections. In section 2, we introduce the extreme
value theory. In section 3, we derive first-order asymptotics for 7,,[X]| for the Fréchet, Weibull
and Gumbel cases separately. In section 4, we derive second-order asymptotics for 7,[X]
for all three cases. In section 5, we numerically examine the accuracy of first-order and
second-order asymptotics.

2 Extreme Value Theory

A distribution function F’ is said to belong to the max-domain of attraction of a distribution
function G, denoted by F' € MDA(G), if for a sequence of independent and identically
distributed random variables, {X,,,n = 1,2,...}, with common distribution function F', the
normalized block maximum M, = max;<,<, X;, has a distribution weakly converging to G.
The classical Fisher-Tippett theorem (see Fisher and Tippett (1928)) states that G has to
be one of the Fréchet, Weibull and Gumbel distributions whose standard forms are given by,
respectively,

Q. (z) = exp{—x~*} for x > 0,

U, (x) =exp{—|z|"} for x <0, and

A(z) = exp{—e"} for x € R.

It is usually convenient to characterize the three max-domains of attraction in terms of
regular variation; see, for example, Embrechts et al. (1997). A positive measurable function
f(+) is said to be regularly varying at oo, with a regularity index o € R, denoted by f(-) € R4,

if
f02) o psp) (2.1)

o 7 @)

For the extreme case of (2.1) with e = +00, the function f(-) is said to be rapidly varying
at oo, denoted by f(+) € Rioo.

Using the concept of extended regular variation leads to a unified description for the

three max-domains of attraction. By definition, a positive measurable function f(-) is said

to be extended regularly varying with index v € R, denoted by f(-) € ERV.,, if there exists



an auxiliary function a(-) > 0 such that, for all x > 0,

fltn) = f(t) _ a7 =1
SR al) "

(2.2)

where the right-hand side is interpreted as logz when v = 0. We will use this usual con-
vention and throughout the paper. The auxiliary function a(-) appearing in (2.2) is often

chosen to be
vf(1), v >0,

ao(t) = ¢ —(f(o0) = f(1)), v <0, (2.3)
f) =1 [} f(s)ds, v =0.
Note that for v = 0, if f(c0) = oo then ag(t) = o(f(t)) as t — oo while if f(oc0) < oo then
ao(t) = o(f(oc0) — f(t)) as t — oo. Theorem 1.1.6 of de Haan and Ferreira (2006) essentially
proves that F' € MDA(G,,) if and only if U € ERV,,, where

(I)l/'ya v > 07
Gy=4¢ Yoy, 7<0,
A, 7 =0,

and U is the quantile function of 1/F as defined above.

Very often we need not only to derive first-order asymptotics such as (2.1) and (2.2) but
also to know their convergence speed. For the latter purpose, we introduce the concepts of
second-order regular variation and second-order extended regular variation.

By definition, a positive measurable function f(-) is said to be second-order regularly
varying with first-order index v € R and second-order index p < 0, denoted by f(-) € 2RV, ,,
if there exists an auxiliary function A(-), which does not change sign eventually and converges
to 0, such that, for all x > 0,

flx) .~y
L r_1
lim 1® — L

e A(f) T p

More generally, a positive measurable function f(-) is said to be second-order extended
regularly varying with first-order index v € R and second-order index p < 0, denoted by
f(-) € 2ERV,, ,,, if there exist a first-order auxiliary function a(-) and a second-order auxiliary
function A(-), where A(-) does not change sign eventually and converges to 0, such that, for
all z > 0,

lim B — - <ﬂ+p TR 1> x>0 (2.4)
t—00 A(t) p\ vtp Y
Some immediate explanations of (2.4) follow. The right-hand side of (2.4), written as H, ,(x),
is equal to
(o), g0
H,p(z) = % x”logw—%) ,  p=0,7v#0,
3 (log ), v=p=0.



In (2.4), a(-) is itself second-order regularly varying, a(-) € 2RV, , with auxiliary function
A(-) € R,. The two auxiliary functions a(-) and A(-) are unique up to asymptotic equiv-
alence. Moreover, according to Corollary 2.3.5 of de Haan and Ferreira (2006), if a(-) and
A(-) are chosen appropriately, then H, ,(z) is reduced to VU, ,(x) as

U, ,(x) =1 =2z7logx, ~y#p=0, (2.5)

3 First-order Asymptotics

Firstly, we derive first-order asymptotics for the tail distortion risk measure of a general risk
variable X.

Theorem 3.1 Let X be a random variable with Pr(X = %) = 0. Assume that U € ERV,,
with v € R and the first-order auziliary function ag(-). In case v > 0, assume that
floog (xfl/(“”‘s)) dx < oo for some 6 > 0. Then when T = oo

T,[X] ~ F~(p) + ag (1 ip) /01 q_g_ 1dg(q); (3.1)
when T < 00
) = T)[X] ~ & — F~(p) — a0 (1 ip) /01 q_g_ Lag(a). (3.2)

Proof. By Theorem B.2.18 in de Haan and Ferreira (2006), there exists some 0 < py =
po(9) < 1 such that for pp <p<land0<qg<1,

)0 () ]

—~v—5
o (%) .
0 1—p
Therefore, if the inequalities
1
/ ¢ 7 %dg(q) < oo for some § > 0, (3.3)
0
and
/ dg(q) < o0 (3.4)
0 v

hold, then applying the dominated convergence theorem we obtain the following: for & = oo,

1

U (=) - U (& Lo— _
i 0 (q(l;;))(ﬁ) (1 P)dg(Q):/o E—— 77 ldg(Q),




which gives the desired result (3.1); similarly, for & < oo,

~ A

1x—U+—x—U% 1y
im | <q(1 23 (ip) (1 P)>dg(Q) = —/0 4 - 77 Lg(q).

which gives the desired result (3.2).
It remains to verify inequalities (3.3) and (3.4). We consider the three cases, v < 0,7 =0

and v > 0, respectively. For v < 0, inequality (3.3) with § = —/2 and inequality (3.4) hold
obviously. For v = 0, inequality (3.3) is verified by using the condition floo g(z7Y%)dr < oo
and integration by parts, while inequality (3.4) can be verified as

1 1
/ log g 'dg(q) < / g °dg(q) < oo,
0 0

where the last step is due to (3.3). For v > 0, inequality (3.3) is verified the same as before,
while inequality (3.4) is verified as

1 —y 1 1 [e'e) 1 [e'e)
/ T dgla) = / gla™t e < / g(z Y0 dz < oo,
0 1

Y 1

This ends the proof. m

Plugging the expression for ag(+) given in (2.3) into Theorem 3.1, we immediately obtain
first-order asymptotics for the three max-domains of attraction.

Corollary 3.1 Under the conditions of Theorem 3.1, we have the following:

(a) the Fréchet case: if v > 0 then T,[X] ~ F~(p) (1 + [~ g (z7V/7) dz);

(b) the Weibull case: if v < 0 then & — T,[X]| ~ (& — F(p)) (1 - fol g (z71) dx) ;

(¢) the Gumbel case: if v =0 and & = oo then T,[X]| ~ F*~(p), while if v =0 and & < o0
then & — T,[X] ~ 2 — F(p).

The result for the Fréchet case coincides with the one earlier obtained by Zhu and Li
(2012).
4 Second-order Asymptotics

To derive second-order asymptotics, similar as in the proof of Theorem 3.1, we need a uniform
inequality for the second-order extended regularly varying function, which is a restatement
of Theorem B.3.10 of de Haan and Ferreira (2006).



Lemma 4.1 Suppose f(-) € 2ERV,, , with v € R, p <0, first-order auxiliary function a(-)
and second-order auziliary function A(-). Then there exist functions ag(-) and Ay(-) such
that for every e,d > 0, some to = to(g,9) and all t,tx > to,

flz)=f(t) _ 271
ao(tz4 0 Y U, ,(z)| < emax {x’y+p+67 x’%ﬂ’*&} :
0

where V., ,(-) is defined in (2.5).

The next lemma establishes the relation between 2RV and 2ERV:
Lemma 4.2 Let X be a random variable and let p < 0.

(a) When v >0, if U € ERV,, with auziliary function ao(-) and U € 2RV, , with auziliary
function A(-), then U € 2ERV, ,;

(b) When v < 0, if U € ERV, with auziliary function ao(-) and & — U € 2RV, , with
auziliary function A(-), then £ — U € 2ERV, ,.
Proof. (a) In this case, ag(t) = yU(t). We have

U(tz) 1

Ulte)-U@®) 271 U _ozr—1
0 - UWSom -5
A(t) A(t)

Ul(tx)

_ 00 7

YA(t)

7zl —1

— — ) as t — oo.
YoP

Thus, U € 2ERV, , by definition.
(b) In this case, ag(t) = —y(& — U(t)). Similarly as above, we can prove that £ — U €
2ERV,, , with the same limit function. m

We conclude that, under the conditions of Lemma 4.2 and for v # 0, the limit function

H, ,(z) in (2.4) is H, ,(z) = %% Now we derive second-order asymptotics for the tail

distortion risk measure of a general variable X.

Theorem 4.1 Let X be a random variable with Pr(X = &) = 0. Assume that U € 2ERV, ,
with v # 0, p < 0, the first-order auziliary function ag(-) and the second-order auziliary
function A(:). In case v > 0, assume that floog (a:_l/("’+5)) dx < oo for some 6 > 0. Then
when T = o0,

1) = £ +ao (1) [ gt

-
v (1) a () ([ e asto +o)s

7




when T < 00,

R P I

Proof. Note that H, ,(z) = Z 2 = ¢! (\Il%p(x) - ‘”77_1>, where ¢; = v/ (7 + p) and
=p/ (v + p). Thus

= 4 <1%p> 1 (%p) %p(qfl)
U(ga) V() _ ¢
4o (5 (:5) g L
< A(ﬁ) ( 4 (%p) v, , (q )
A0 (75) 4 ) o
+ A (;:) - c_ \P%p ( 1) Z_: 1 ~

< (1 +€)q (v+p+9) +Cq~ (v+9)

In the last step, we used Lemma 4.1 and the following facts: for every v # 0 and p < 0,

there exists some positive constant C' such that, for all 0 < ¢ < 1,

— + —
¢ 01 < Cg~Otrto) ¢ -1

- = ) S OC]_(VM), lOg q_l < q_67
Y+p Y

and Ay(t) ~ A(t). Since one easily checks that fol q 7 °dg(q) < oo hold for some § > 0,
applying the dominated convergence theorem we obtain the following: for = oo,

1 U(ﬁ):U(ﬁ) _
lim (i) / _1 )dg(q),

h ()

which gives (4.1); similarly, for & < oo,

A A()



which gives (4.2). This ends the proof. m
Next we develop second-order asymptotics for the three max-domains of attraction.

Corollary 4.1 Let X be a random variable with Pr(X = &) = 0. In case v > 0, assume
that [~ g (z7/0)) dz < oo for some § > 0.

(a) The Fréchet case: If for some v > 0 and p < 0, U € ERV, with auziliary function
ao(+) and U € 2RV, , with auziliary function A(-), then we have

T,[X] = F~(p) (1 + /1009 (x=17) dx) + F(p)A <ﬁ) (I, +0(1)),

where

I

VP

o (e )ik [T o) o) <l
P (o (a70) — g (7)) dr 7> lel-

(b) The Weibull case: If for some v < 0 and p < 0, U € ERV,, with auziliary function
ao(-) and & — U € 2RV, , with auziliary function A(-), then we have

i1 = 6= ) (1 [ o) ar)
+ = A7) [ )= ) dr o).

p

(¢c) The Gumbel case: Assume v =0, p <0 and U € ERVq with auxiliary function ag(-).

Define I, , by
oy = {_‘1fo s )an o<

fo (e7v) do p=0.

(c1) When & = oo further assume U € 2ERV,, with auziliary functions ao(-) and
Ao(-). Then we have

T[X] = F~ (p)+ao (l%p) /OOO g (e dx—l—a0<1 ip)AO(l ip) (Io,, + o(1).

(c2) When & < oo, further assume & —U € 2ERV , with auxiliary functions ao(-) and
Ao(+). Then we have

& —T)X] =2~ F(p) — ao (%) /Ooog (e™)dz

1
g (1%]) Ay (1%1) (I, +0(1)).



Proof. (a) By Lemma 4.2 and Theorem 4.1, we obtain

13 = ) (1+ 1 i) + A (1) 1 =gt +o))

Write I, , = fol g qfifldg(q). If v < |p|, we continue to derive

1 1 o)
L,= pl/o (qf'yfp _ qfv) dg(q) = _pfl (/0 g (lfl/(wrp)) dx +/1 g (xfl/’y) d:c) )

Notice that if y = —p then fol g (:17*1/ (””)) dx = 0, where we used the dominated convergence
theorem. If v > [p| > 0 then

When p = 0, by the dominated convergence theorem we obtain

1 1 T —1
/ g "logq 'dg(q) =lim [ ¢ dg(q)
0 =0 Jo P
~lim ! / (g (/0 — g (&) da
p— 1

Thus for v > |p| > 0, we have I, , = p~' [[* (g (z7V/0F)) — g (z71/7)) da.
(b) By Lemma 4.2 and Theorem 4.1, we obtain

P16 = - o) (1 [a () ar)
w7 ) ([ gt +o)).

Similar as in (a), it holds for all p < 0 that

Vg r—1 ! —1/ —1/(v+p)
/qu —dg(a) = /0<g(x ")~ g (V) da

Then we obtain the desired result.
(c) Notice that U € 2ERV, , with auxiliary functions ao(-) and Ag(-) such that

Utz)-U(t) _ P
lim —20() gt = { pp E p <0,

t—o0 Ap(t) 1 (log )2, p=0.

Then the asymptotics for the Gumbel case can be derived similarly by using Lemma 4.1. m
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5 Numerical Examples

In this section, we use R to numerically examine the accuracy of first-order and second-order
asymptotics derived in section 3 and 4.

Example 5.1 (The Fréchet case) Assume that F' is a Pareto distribution given by

0
z+0

F(x)zl—(

Thus F' € MDA(®,) and U(t) = 6(t"—1). Easily one can check U € ERV,, with y = 1/a and
U € 2RV, _, with the second-order auxiliary function A(¢) = v¢~7. We choose the distortion
function g(x) = y/z and set @« = 2.1 and # = 1. In Graph 5.1, we compare the exact value,

) , x,a,0 > 0.

first-order and second-order asymptotic values for 7,[X] on the left and show the ratios of
exact value to both asymptotic values on the right. We find that both ratios converge to 1
as p T 1 and second-order asymptotics is more accurate than first-order asymptotics.

’ Graph 5.1 about here. ‘

Example 5.2 (The Weibull case) Assume that F' is a beta distribution with probability
density function given by

.Ta_l(l o Jﬁ)b_l
B(a,b)

Thus, F' € MDA (V). One can check U € ERV,, with vy = —1/b and 1 — U € 2RV, , with
the second-order auxiliary function

A) = —bfblll) (bB(i, b))_ 5

see, for example, Mao and Hu (2012). We choose the distortion function g(z) = /= and
set a = 2 and b = 6. Similarly as in Graph 5.1, we compare the exact value for 1 — T,[z]

fz) =

0<z<la,b>0.

S

and its asymptotic values of beta distribution in Graph 5.2. Again we can see that both
ratios converge to 1 as p T 1 and second-order asymptotics is more accurate than first-order
asymptotics.

’ Graph 5.2 about here. ‘

Example 5.3 (The Gumbel case) Assume that F' is a Weibull distribution given by
Fiz)=1—¢ (&) 2>00<a<1,b>0.

Thus, F € MDA(A) and U(t) = b (log ¢)*/*. If we set a = 1/2 and b = 1, then U € 2ERV
with first-order auxiliary function a(t) = 2logt and second-order auxiliary function A(t) =

11



1/logt. We choose the distortion function g(x) = x?. Similarly as in Graph 5.1, we compare

the exact value and asymptotic values for T,[x] of Weibull distribution in Graph 5.3. Again

we find that both ratios converge to 1 as p T 1 and second-order asymptotics is more accurate

than first-order asymptotics.

] Graph 5.3 about here. ‘
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Graph 5.2 Weibull case: Beta distribution
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