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Abstract	
  
	
  
This	
   talk	
   considers	
   the	
   impact	
   of	
   sampling	
   variation	
   on	
   the	
   calibration	
   of	
  
stochastic	
   mortality	
   models.	
   Random	
   variation	
   in	
   deaths	
   counts	
   results	
   in	
  
parameter	
  uncertainty	
  in	
  estimates	
  of	
  age,	
  period	
  and	
  cohort	
  effect	
  in	
  the	
  model.	
  
In	
  turn	
  this	
  has	
  an	
  impact	
  on	
  time	
  series	
  parameter	
  estimates.	
  
	
  
With	
   small	
   populations,	
   sampling	
   variation	
   causes	
   an	
   upwards	
   bias	
   in	
   the	
  
estimated	
   volatility	
   of	
   period	
   effects	
   using	
   standard	
   maximum	
   likelihood	
  
methods.	
  We	
  seek	
  to	
  counteract	
  this	
  problem	
  of	
  bias	
  using	
  Bayesian	
  inference.	
  	
  
	
  
We	
  use	
  England	
  and	
  Wales	
  (EW)	
  males	
  as	
  a	
  benchmark	
  and	
  then	
  scale	
  this	
  down	
  
to	
  simulate	
  small	
  populations.	
  We	
  will	
  discuss	
  to	
  what	
  extent	
  Bayesian	
  methods	
  
reduce	
  bias	
  in	
  the	
  model	
  volatility,	
  using	
  full	
  EW	
  population	
  as	
  a	
  benchmark.	
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Stochastic Model
We select stochastic model “M7” to reflect the work of Cairns et al. (2009), which 

suggests it fits the males from England and Wales well.

Recall the formula for M7:

𝐷 𝑡, 𝑥 |𝜃1 ∼ 𝑃𝑜𝑖(𝑚 𝜃1, 𝑡, 𝑥 𝐸(𝑡, 𝑥))

logit 𝑞 𝜃1, 𝑥, 𝑡 = 𝜅𝑡
(1)

+ 𝜅𝑡
2

𝑥 − ҧ𝑥 + 𝜅𝑡
3

𝑥 − ҧ𝑥 2 − ො𝜎𝑥
2 + 𝛾𝑐

4

• 𝜃1 = (𝜅𝑡
1
, 𝜅𝑡

2
, 𝜅𝑡

3
, 𝛾𝑐

4
)

• 𝜅𝑡
1

is a period effect in year 𝑡 = 𝑡1, … , 𝑡𝑛𝑦 for each 𝑖 = 1, 2, 3.

• γ𝑐
4

is the cohort effect for the cohort born in year 𝑐 = 𝑡 − 𝑥 for 𝑡 = 𝑡1, … , 𝑡𝑛𝑦 and 𝑥 =

𝑥1, … , 𝑥𝑛𝑎.

• ҧ𝑥 is the mean of the age range we use for our analysis.

• ො𝜎𝑥
2 is the mean of 𝑥 − ҧ𝑥 2.
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Two-Stage Approach

Stage 

1. Find the estimates for period and cohort effects, መ𝜃1 by maximising the Poisson 

likelihood.

2. Fit time series model to these effect. 

Most pension schemes are less than 1% of national population. 

Two-stage approach leads to biased estimates of volatility for small populations.

• Large sampling variation affects  latent parameter estimation, with significant noise 

obscuring the true signal (Cairns, Blake, Dowd et al. 2011).

• Results in non-negligible bias to the parameter estimation of the projecting model, 

given the assumed true rates (Chen, Cairns and Kleinow 2015).

• Over fit the cohorts with only one observation (a problem with the two-stage 

approach: see Cairns et al. 2009)
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Bayesian Approach

Bayesian approach offers a way to avoid or reduce this bias by

• Combining Poisson and time series likelihoods

• Using knowledge of larger England and Wales dataset to choose more informative 

priors than one might normally choose.

We use England and Wales death rates as a benchmark to test how well the Bayesian 

approach with informative priors performs.
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Data

• Benchmark exposure 𝐸0 𝑡, 𝑥 and corresponding deaths count 𝐷0 𝑡, 𝑥 of the males 

in England and Wales (EW) in the HMD database, during year 1961 to 2011, aged 

50-89 last birthday.

• Simulate 𝐷𝑤(𝑡, 𝑥), where 𝑤 = 0.01 based on 

𝐷𝑤 𝑡, 𝑥 | መ𝜃0 ∼ Poi(𝑚 መ𝜃0, 𝑡, 𝑥 𝑤𝐸0(𝑡, 𝑥))

where 

• መ𝜃0: parameter estimates for benchmark 𝐷0 𝑡, 𝑥 , i.e. EW

• 𝑚 መ𝜃0, 𝑡, 𝑥 is the fitted death rates given መ𝜃0, that is መ𝜃0 is the true rates for 𝐷𝑤 𝑡, 𝑥 .

• Find the parameter estimates መ𝜃𝑤 for 𝐷𝑤 𝑡, 𝑥 .
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Notations

• 𝜽1, the vector of all the latent parameters

• 𝜽11 = 𝜅𝑡1
1
, 𝜅𝑡1

2
, 𝜅𝑡1

3
𝑇
, vector of period effects at year 𝑡1

• 𝜽12, vector of the rest of period effects

• 𝜽13 = γ𝑡1−𝑥𝑛𝑎
4

• 𝜽14, vector of cohort effect for the rest cohorts
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Prior for 𝜿 and 𝜸 𝟒

• 𝜽11 ∝ uniform distribution

• 𝜽12, multivariate random walk: 

𝜿𝒕 = 𝜿𝑡−1 + 𝝁 + 𝝐𝑡

where 

– 𝝁 = 𝜇1, 𝜇2, 𝜇3
T is the drift (hyper-parameter).

– 𝝐𝑡 ∼ 𝑀𝑉𝑁(𝟎, 𝑽𝝐), i.i.d three dimensional multivariate normal distribution 

independent of 𝑡.

• 𝜽14, AR(1) model: 

𝛾𝑐
4
= 𝛼γ𝛾𝑐−1

4
+ 𝜖𝑐, for 𝑐 > 𝑡1 − 𝑥𝑛𝑎,

where 𝜖𝑐 are i.i.d and 𝜖𝑐 ∼ 𝑁(0, 𝜎𝛾
2).

• 𝛾𝑐
4
|𝛾𝑐−1

4
∼ 𝑁(𝛼γ𝛾𝑐−1

4
, 𝜎𝛾

2)

• 𝛾𝑡1
4
∼ 𝑁(0,

𝜎𝛾
2

1−𝛼𝛾
2)
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Prior for Hyper-Parameters

• 𝑽𝜖 ∝ Inverse Wishart (𝜈, 𝚺)

– MCMC-Mean: Fix the mean of prior to ෡𝑽𝜖
𝐸𝑊

– MCMC-Mode: Fix the mode of prior to ෡𝑽𝜖
𝐸𝑊(sensitivity test)

• 𝝁 ∝ uniform 

• 𝛼𝛾 ∝ 1 − 𝛼𝛾
2 𝑔

for 𝛼 < 1

• 𝜎𝛾
2 ∼ Inverse Gamma (𝑎𝛾, 𝑏𝛾)
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𝑽𝝐 given MLE

መ𝜃𝑤 for w=0.01

መ𝜃0
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Credibility Interval for 𝜿 and 𝜸 𝟒
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CDF for 𝝁𝟏 with Sensitivity Test
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CDF for 𝑽𝝐(𝟏, 𝟏) with Sensitivity Test
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CDF for 𝝁𝟐 with Sensitivity Test



19 September 2016 14

CDF for 𝑽𝝐(𝟐, 𝟐) with Sensitivity Test
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CDF for 𝝁𝟑 with Sensitivity Test
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CDF for 𝑽𝝐(𝟑, 𝟑) with Sensitivity Test
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Conclusion
For small population

• The co-variance matrix estimated by MLE is significantly biased to the right of the 

assumed true value due to the Poisson model’s over fitting.

• We combined the two stages into one by adding time series likelihood for the latent 

parameters and gained the posterior distribution with the MCMC procedure.

• The Bayesian method provides an improved fit to the hyper parameter 𝑽𝜖.

• The low level information involved in short cohorts is balanced by the time series 

prior.

• The posterior distribution for small population is sensitive and fixing the mode of the 

prior for the co-variance matrix to the assumed true rates provides approximately 

unbiased fit to 𝑽𝜖
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Questions Comments




