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Abstract

In this review work, we study in details the theorem (formula) for probability
of up-crossing before down-crossing (or ruin in case of lower barrier is 0) by a
Lévy process, insurance reserve, having both sided jumps given by Asmussen
and Albrecher [5]. Here, we provide the details proof of the theorem as well
as investigate it by using numerical example.

1 Introduction

A real-valued stochastic process {Rt : t ≥ 0} is said to be Lévy process if:
(i) R0 = 0 almost surely (a.s.), (ii) The increments are independent, i.e. for
any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn <∞ Rt2 −Rt1 , Rt3 −Rt2 , · · · , Rtn −Rtn−1 , (iii)

For any s < t, Rt − Rs
D
= Rt−s, i.e. the increments are stationary and (iv)

For any ε > 0 and t ≥ 0, limh→0 P (|Rt+h −Rt| > ε) = 0 i.e. continuous in
probability.

The reserve of an insurer with initial capital u ∈ [b, a], where a and b are
the upper boundary and lower boundary respectively and having both sided
jumps can be expressed by the following equation

Rt = u+

N1
t∑

i=1

pi −
N2
t∑

i=1

ci + µt+ σWt with R0 = u (1)

where positive jumps {pn}n≥1 are a family of i.i.d. having distribution Fp
and occur at the epochs of the Poisson(λp) process N1

t also independent of
N1
t and is of phase-type with representation (αp,Tp), and negative jumps
{cn}n≥1 are a family of i.i.d. having distribution Fc and occur at the epochs
of the Poisson(λc) process N2

t also independent of N2
t and is of phase-type

with representation (αc,Tc). µ is the drift of the Brownian motion and Wt

is a standard Brownian motion with constant variance σ2 > 0. The term
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µt+ σWt represents the fluctuations in the money flow of the company, for
example number of clients may change or other market fluctuations. Then
equation(1) satisfies all four conditions of Lévy process.

Additionally, Lévy process has some special properties some of those are: (i)
Lévy process can have two types of jumps, finitely many big jumps in unit time
interval and infinitely many small jumps in unite time interval, (ii) if there is a
positive measure, ν(dx), centred at R \ {0} satisfying

∫ +∞
−∞ (1∧ x2)ν(dx) <∞

(usually called Lévy measure), then jumps of Lévy process can be characterized
by its Lévy measure ν(dx) [5], (iii) Lévy process can be decomposed as an
independent sum of Brownian motion and compound Poisson like processes
([5],[6], [7]), (iv) Lévy process has cádlág (right continuous with left limit)
path with finite variation in finite intervals ([5],[6], [7]), (v) Lévy process
holds infinitely divisible property [2] and (vi) Every Lévy process is a semi-
martingale [?].
According to property (iii) and using renowned Lévy- Itô decomposition, we
can decompose our reserve process. Lévy-Itô decomposition [7] says that if
there is a Lévy measure ν(dx), then the characteristic exponent also known
as Lévy exponent K(·) (defined by E(eγRt) = e−tK(γ), for all γ ∈ C) of an
infinitely divisible process can be written

K(γ) =

{
µγ +

σ2γ2

2

}
+

{
ν(R \ (−1, 1))

∫
|x|≥1

(1− eγx) ν(dx)

ν(R \ (−1, 1)

}

+

{∫
0<|x|<1

(1− eγx + γx)ν(dx)

}

Or equivalently,
K(γ) = K1(γ) +K2(γ) +K3(γ) (2)

for all γ ∈ C, where µ, σ ∈ R. Moreover, K1(γ) is the characteristic exponent
of a linear Brownian motion, K2(γ) is the characteristic exponent of an
independent compound Poisson process with rate ν(R \ (−1, 1)) having i.i.d.

entries with common distribution ν(dx)
ν(R\(−1,1))

which are concentrated on {x :

|x| ≥ 1} and K3(γ) is the characteristic exponent of a square-integrable
martingale. So, our Lévy (reserve) process can be decomposed as Rt =
R1
t + (Rp

t +Rc
t)︸ ︷︷ ︸

R2
t

+R3
t , where R1

t is a linear Brownian motion, Rp
t and Rc

t

are compound Poisson processes corresponding to premiums and claims
respectively and R3

t is a square-integrable martingale with a.s. countable
number of jumps or path of discontinuity on each finite time interval, which
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has magnitude less than unity. However, it is clear from the Lévy- Itô
decomposition that K1(γ),K2(γ)andK3(γ) are characteristic exponents of
three different types of Lévy processes. Hence, K(·) may be considered as the
characteristic exponent of the independent sum of these three Lévy processes,
by property (v) which is again a Lévy process. Therefore, the characteristic
exponent of a Lévy process Rt can be defined as

K(γ) = µγ +
σ2γ2

2
+

∫
R
(1− eγx + γx1(|x|<1))ν(dx) (3)

for γ ∈ C.
The function K(γ) completely determines the law of the process Rt.

Let us define the stopping times as follows:
τa = inf{t ≥ 0 : Rt ≥ a}, τb = inf{t ≥ 0 : Rt ≤ b} and τ = τa ∧ τb.
Let’s present the process Rt in the form of a random walk: Rn = u + Sn,
where Sn =

∑n
i=0(Ri −Ri−1). Then we can use the following theorem:

Theorem 1.1. [3] For a random walk on R there are only four possibilities,
one of which has probability 1. (i) Sn = u for all n (ii) Sn → ∞ (iii)
Sn → −∞ (iv) −∞ = lim infSn < lim supSn =∞.

We are not interested case (i) but the other cases ensure us that (if there
are two boundaries) the process will attain either one or both boundaries.
Hence, we have Pu(τ = τa) + Pu(τ = τb) = 1.
Throughout the paper we use Pu to denote the law of Rt such that R0 = u
and Eu for corresponding expectation.
This literature is oriented in the following way: section 2 contains basics on
phase-type distribution. In section 3 we discuss Lévy exponent of infinitely
divisible process, compound Poisson distribution and phase-type distribution.
Section 4 has some important martingales. In section 5 we bring exact formula
for probability of up-crossing before down-crossing (or ruin) by a Lévy process.
Section 6 contains an empirical example.

2 Phase type premiums and claims

Here we define the phase-type distribution. Everything in this section are
taken from [1] by Ali and Pärna however, the terminologies and notations
are based on [2] by Asmussen and Albrecher.
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2.1 Phase type distribution

Let {Xt}t≥0 be a continuous time Markov chain with finitely many states
denoted by 1, 2, . . . , n,∆. The state ∆ is assumed to be absorbing and all
other states are transient. The transition probability matrix of Xt is denoted
by P, the ith row being the conditional distribution of the next state given
the current state i. Let T denote the transition intensity matrix for the states
1, . . . , n. Then the intensity matrix (transition rate matrix, infinitesimal
generator) for the whole Markov chain can be written in block-partitioned
form as (

T t
0 0

)
where

t = −Te

and e = (1, 1, · · · , 1)
′
. The vector t represents the exit rate vector with its

i-th component ti being the intensity of leaving the state i for the absorbing
state ∆.

Definition 2.1. The distribution of the absorption time in the Markov chain
described above is called phase type distribution.

Let ααα be a row vector representing the initial distribution of states
1, 2, . . . , n. The couple (ααα,T) is called the representation of the phase type
distribution. The density of a phase type distribution can be written as

f(x) = αααeTxt, x ≥ 0. (4)

It is seen that phase type distribution is a generalization of the exponential
distribution which corresponds to the case n = 1.

3 Lévy exponent of compound Poisson distri-

bution

In this section at first, we define the Lévy exponent of a stochastic process then
we present Lévy exponent of compound Poisson process that is compound
Poisson process corresponding to our premium process and claim arrival
process.
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3.1 Lévy exponent

Cumulant generating function (c.g.f) for any γ ∈ C of a infinitely divisible
process, Rt, t ∈ R having distribution FRt is of the form

log(MRt(γ)) = logE[eγRt ] = log

∫ +∞

0

eγxdFRt(x) = tK(γ).

Definition 3.1. The component K(γ) is known as Lévy exponent and define
by

K(γ) =
1

t
logE(eγRt). (5)

3.2 Lévy exponent of compound Poisson process

If Xt is of phase-type with representation (ααα,T), then moment generating
function of Xt is given by

MXt(γ) = ααα(−γI−T)−1t (6)

If Zt is a compound Poisson process denoted by Zt =
∑Nt

i=1 Xi where Nt, t ≥ 0
is a Poisson process with rate λ and {Xn}n≥1 is a family of i.i.d. random
variables which are independent from {Nt, t ≥ 0} as well. Then m.g.f of Zt is
given by

MZt(γ) = eλt(MX1
(γ)−1) (7)

Using equations (5), (6) and (7) we may define Lévy exponent of a compound
Poisson process.

Definition 3.2. Lévy exponent of a compound Poisson process of aforemen-
tioned type is defined by

K(γ) = λ(ααα(−γI−T)−1t− 1), for any γ ∈ C (8)

According to equation (1), our premium and claim arrival processes can

be defined as follows: P =
∑N1

t
i=1 pi and C =

∑N2
t

i=1 ci. Premium and claim
sizes, pi and ci are of phase-type with representation (αααp,Tp) and (αααc,Tc)
respectively. Therefore, using (8) we can write the Lévy exponent of premium
process and claim arrival process in the following way:

KP (γ) = λp
(
αααp (−γI−Tp)

−1 tp − 1
)

(9a)

KC(γ) = λc
(
αααc (γI−Tc)

−1 tc − 1
)

(9b)
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Also, we know that Laplace exponent of Wiener (W ) process with drift µ and
constant variance σ2 > 0 is

KW (γ) = γµ+
γ2σ2

2
(9c)

Summing up sub-equations of (9), we obtain

K(γ) = γµ+
γ2σ2

2
+ λp

(
αααp (−γI−Tp)

−1 tp − 1
)

+

λc
(
αααc (γI−Tc)

−1 tc − 1
) (10)

Proposition 3.1. Suppose the premiums and claims are of phase-type with
representation (αααp,Tp) and (αααc,Tc) and their corresponding compound Pois-
son processes have jump rates λp and λc respectively. Then Laplace exponent
of Lévy process (1) is given by (10) whenever K(γ) is well-defined for any
γ ∈ C.

In the next chapter we discuss two important martingales, namely Wald
martingale and Kella-Whitt martingale and Doobs optional stopping time.
The Kella-Whitt martingale for our Reserve process helps us to use Doobs
optional stopping time. However we need Wald martingale to proof Kella-
Whitt martingale.

4 Some important martingales and proper-

ties of martingale

In this section we define martingale, local martingale, some important mar-
tingales and some important properties of martingale. This chapter is based
on Kella Whitt [8] and Asmussen [4].

4.1 Martingale

Definition 4.1. A stochastic process {Yt}t≥0 is said to be martingale with
respect to a natural filtration {Ft}t≥0, if

E[Yt+s|Ft] = Yt, ∀s ≤ t (11)

Definition 4.2. A local martingale is a type of stochastic process, satisfying
the localized version of the martingale property.

Furthermore, every martingale is a local martingale and every bounded
local martingale is a martingale.
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4.2 Wald martingale

Theorem 4.1. If Rt is a Lévy process with Lévy exponent K(γ). Then

Mt = eγRt−tK(γ) (12)

is a martingale with respect to the filtration Ft.

Proof. As E(eγRt) = etK(γ), we see that E(|Mt|) = E(eγRt)E(e−tK(γ)) <
∞ for each t ≥ 0 .
For each 0 ≤ s ≤ t, let us define

Mt = Mse
γ(Rt−Rs)−(t−s)K(γ)

Being Lévy process Rt has independent and stationary increments, i.e.

Rt − Rs
D
= Rt−s. Moreover, Ms is Fs measurable, hence taking conditional

expectation on the above expression with respect to the filtration Fs, we have

E(Mt|Fs) = MsE[eγRt−se−(t−s)K(γ)]

However, E(eγRt) = etK(γ) implies EeγRt−s = e(t−s)K(γ). That is E(Mt|Fs) =
Ms. Therefore, Mt is a martingale.

Definition 4.3. The martingale, Mt, defined in (12) is called Wald martin-
gale.

4.3 Kella-Whitt martingale

The following definition and theorems are based on Kella-Whitt [9] and
Protter [?].

Definition 4.4. The total variation of a real valued (or complex valued)
function g, defined on [a, b] ⊂ R is defined by

V b
a (g) = supP

n−1∑
i=0

|g(xi+1 − g(xi)|,

where supremum considers set of all partitions, P = {a = x0, x1, · · · , xn = b}
of the given interval [a, b].

Definition 4.5. The Lebesgue-Stieltjes differentials for a function g of
bounded variation is defined by

dg(x) = dg1(x)− dg2(x),

where g1(x) = V x
a (g) is the total variation of g in the interval [a, x] and

g2(x) = g1(x)− g(x). Both g1 and g2 are monotono decreasing.
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Cádlág process has only discontinuity at jumps [9],[?] and the jumps are
finitely countable. Let define the discontinuous jumps at t by ∆Jt = Jt − Jt− ,
where Jt− = lims↑t Js which helps to write the following definition. Moreover,
if supt |∆Jt| ≤ c < ∞ , for any constant c. Then we say Jt has bounded
jumps.

Definition 4.6. The jumps of a Lévy process can be defined by

Jt =

∫ t

0

dJ cs +
∑

0≤s≤t

∆Js (13)

that is {J ct }t≥0 is a continuous adapted process with J c0 = 0 and have
bounded variation on finite intervals.

Theorem 4.2. Let {Rt} be a Lévy process with Lévy exponent K(γ), for all
γ ∈ C, let {Jt}t≥0 be an adapted cádlág process of bounded variation on finite
intervals defined in (13) and let Zt = Rt + Jt. Then for each t, the random
variable Kt defined by

Kt = K(γ)

∫ t

0

eγZsds+ eγJ0 − eγZt + γ

∫ t

0

eγZsdJ cs +
∑

0<s≤t

eγZs
(
1− e−γ∆Js

)
(14)

is a local martingale whenever K(γ) is well-defined. Moreover, if if the expected
variation of {J ct }t≥0 and the expected number of jumps of {Jt}t≥0 are finite
on every finite intervals, then Kt, defined in (14) is a martingale.

Before giving proof of theorem (4.2) let us proof the following lemma.

Lemma 4.1. Kella-Whitt martingale, Kt is uniformly convergent.

Proof. If we consider Jt = 0 Kella-Whittt martingale given in (14) will reduce
to

Kt = K(γ)

∫ t∧τ

0

eγRsds+ eγu − eγRt∧τ , γ ∈ C. (15)

By considering τ = τa ∧ τb implies

|Kt| ≤ |K(γ)|τe|γ|max(|b|,a) + e|γ|u + e|γ|(a−u+Vp) + e|γ|(u−|b|+Vc)

where Vp represents the possible overshoot over a and Vc represents possible
undershoot under b. Moreover, Vp and Vc are of phase-type with representation
(ei,T). Therefore, both E(e|γ|(a−u+Vp)) and E(e|γ|(u−|b|+Vc)) are finite for 0 ≤
t ≤ τ . Also, Eτ < ∞. Therefore, supt≤τ |Kt| < ∞. That is Kt is uniformly
convergent in other words it is integrable.

8



Proof. of theorem (4.2). The proof is based on Kella-Whitt [8] and Protter [9].
Consider the Wald martingale Mt = eγXt−tK(γ) and the process Bt = eγJt+tK(γ),
where Jt as in (13). Hence, with the help of stochastic integration by parts
we get

MtBt −M0B0 =

∫ t

0

Ms−dBs +

∫ t

0

Bs−dMs +
∑

0<s≤t

∆Ms∆Bs (16)

Since {Bt}t≥0 is of bounded variation on bounded intervals, the last term of

(16) is valid. However,
∫ t

0
∆MsdBs =

∑
0<s≤t ∆Ms∆Bs, So, we have

MtBt −M0B0 =

∫ t

0

Ms−dBs +

∫ t

0

Bs−dMs +

∫ t

0

∆MsdBs

=

∫ t

0

Bs−dMs +

∫ t

0

(Ms− + ∆Ms)dBs

=

∫ t

0

Bs−dMs +

∫ t

0

MsdBs

That is

−
∫ t

0

Bs−dMs =

∫ t

0

MsdBs +M0B0 −MtBt (17)

We know that {Mt}t≥0 is a martingale therefore the left side of equation (17)
is a local martingale which implies that the right side is a local martingale.
The proof will conclude if we can identify the right side of (17) with Kt given
in (14). For 0 < s ≤ t and taking derivative of Bt we obtain

dBs = Bs{γdJs +K(γ)ds}

= BsK(γ)ds+ γBsdJ
c
s +Bs(γ

∑
0≤s≤t

∆Js)

= BsK(γ)ds+ γBsdJ
c
s +Bs(1− e−γ∆Js)

The last expression is Lebesgue-Stieltjes type and hence defined path by
path. So, supt|J ct | < c for any constant c. That is {J ct }t≥0 has finite expected
variation and {Jt}t≥0 has finite expected number of jumps on every finite
interval. Which implies Esup0≤s≤t|K(t)| < ∞ for every finite t. Hence by
dominated convergence theory Kt is a martingale.

It is known that Doob’s optional stopping time is permissible for an
integrable martingale which leads us to write the following definition.
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4.4 Doobs optional stopping time

Proposition 4.1. If for a given t, Esups≤t|Ks| < ∞, then Kt , given in
(14), is a proper martingale. Moreover, if τ be a stopping time such that
Esupt≤τ |Kt| <∞, then EKτ = EK0.

In the next chapter we will see the application of Kella-Whitt martingale
and Doob’s optional stopping time theories on our reserve process (1).

5 Application on premiums and claims

In this chapter we bring exact formula for probability of up-crossing before
down-crossing by a Lévy process having two sided jumps, both of the jumps
are of phase-type. This chapter is based on Asmussen [4], [6] and Asmussen
and Albrecher [5].

5.1 Probability of crossing boundaries by a Lévy pro-
cess

Suppose Lévy exponent of (1) is given by (10). Let the event of crossing upper
barrier a before lower barrier b resulting by a Brownian motion and not a
jump denoted by V p

0 . Similarly, the event of crossing the lower barrier b before
upper barrier a by a Brownian motion and not a jump be V c

0 . Moreover, let
V p
i illustrate the events of crossing a before b by a jump when the process

is at phase i and V c
i be the events of crossing b before a by a jump when

the process is at phase i . Then both overshoot, Vp (value of Rt over a) and
undershoot, Vc (value of Rt below b) are of phase-type with representations
(ei,Tp) and (ei,Tc) respectively, where ei is the ith unit column vector,
i.e. the ith entry is 1 and all other are 0. Hence, their moment generating
functions are e

′
i(−γI − Tp)

−1tp and e
′
i(γI − Tc)

−1tc respectively. Also, we
denote eigenvalue with largest real part of −Tp be ρ+ and eigenvalue with
smallest real part of Tc be ρ−.

Theorem 5.1. If a phase-type distribution has n1 transient state , then the
corresponding intensity matrix is a square matrix of order n1 × n1. Moreover,
its moment generating function is a rational expression whose numerator is a
polynomial of degree n1 − 1 and denominator is a polynomial of degree n1.

Proof. First part of the proof is trivial. According to the definition of intensity
matrix of a phase-type distribution, it is clear that the intensity matrix, T is a
square matrix. In addition to that if there are n1 transient states then order of
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T is n1×n1. Moreover, we see that moment generating function of phase-type
distribution is of the form ααα︸︷︷︸

1×n1

(γI−T)−1︸ ︷︷ ︸
n1×n1

t︸︷︷︸
n1×1

, as an example.The inverse

matrix (γI−T)−1︸ ︷︷ ︸
n1×n1

will contain entries of the form c
d(γ)

, where c is a constant

and d(γ) is a polynomial of degree n1. In addition to that ααα is a row vector
and t is a column vector of constants. So, after simplifying the m.g.f. of
phase-type distribution, ααα(γI−T)−1t, we will obtain a rational expression

of the form n(γ)
d(γ)

where n(γ) is a polynomial of degree n1 − 1 and d(γ) is a
polynomial of degree n1.

Corollary 5.1. Suppose premium size has phase-type distribution with np
number of transient states and claim size has phase-type distribution with nc
number of transient states. Then there exist n = np + nc + 2 distinct complex
numbers γn such that Cramér-Lundberg equation holds, i.e. K(γi) = 0, i =
1, 2, · · · , n.

Proof. According to theorem (5.1) it is obvious that moment generation func-
tion of overshoot (αp(γI−Tp)

−1tp) corresponding to premiums is a rational

expression of the form np(γ)

dp(γ)
, where np(γ) is a polynomial of degree np − 1

and dp(γ) is a polynomial of degree np. Similar argument is applicable for

αc(γI − Tc)
−1tc, i.e. it will be a polynomial of degree nc(γ)

dc(γ)
with nc(γ) is a

polynomial of degree nc − 1 and dc(γ) is a polynomial of degree nc. Then
using (10) Cramér-Lundberg equation K(γi) = 0 can be written as follows:

0 = γµ+
γ2µ2

2
+ λp

(
np(γ)

dp(γ)
− 1

)
+ λc

(
nc(γ)

dc(γ)
− 1

)
i.e.

0 = dp(γ)dc(γ)γµ+ dp(γ)dc(γ)
γ2µ2

2
+

λpdc(γ)(np(γ)− dp(γ)) + λcdp(γ)(nc(γ)− dc(γ))

The highest degree of the above equation belongs to second term of right
hand side which illustrates that it is a polynomial of degree np + nc + 2. So,
the Lundberg equation has np + nc + 2 number of distinct solutions.

It is also clear from the expression of δ that if σ2 = 0 and µ 6= 0, then
Lundberg equation has np + nc + 1 number of roots however, if σ2 = 0 and
µ = 0, then there are np + nc number of roots.
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Lemma 5.1. Let ηpi (γ) = Eu(eγVp|V p
i ) (m.g.f of overshoot) and ηci (γ) =

Eu(eγVc|V c
i ) (m.g.f of undershoot) and let ζpi = Pu(τa < τb, V

p
i ) and ζci =

Pu(τb < τa, V
c
i ), where Vp is the possible overshoot over a and Vc is the

possible undershoot under b and V p
i and V c

i are the events of overshoot (over
a) and undershoot (under b) (as stated above) respectively. Then

Eu[eγRτ ] = eγa
np∑
i=0

ηpi (γ)ζpi + eγb
nc∑
i=0

ηci (γ)ζci

Proof. It is clear that if the process Rt crosses the boundary (either upper or
lower), then the event will happen with probability 1. Hence, if the positive
jumps are of phase-type with representation (αααp,T), then the overshoots,
Vp’s are also phase-type with representation (eee

′
i,Tp), where eeei is the column

vector with 1 in the ith position and all other entries are 0. Similarly, the
undershoots are of phase-type as well with representation (eee

′
i,Tc).

If the process crosses the upper boundary a by a jump, then Rτ=τa = a+ Vp.
Similarly, if the process crosses the lower boundary b by a jump , then
Rτ=τb = b− Vc. Therefore, the term eγRτ (the right most term in modified
Kella-Whitt martingale (15)) can be evaluated in the following way:

Eu[e
γRτ ] =

∑np
i=0 Eu[eγ(a+Vp); τ = τa, V

p
i ] +

∑nc
i=0 Eu[eγ(b−Vc); τ = τb, V

c
i ]

= eγa
∑np

i=0 Eu[eγVp ; τa < τb, V
p
i ] + eγb

∑nc
i=0 Eu[eγVc ; τa > τb, V

c
i ]

Now, using conditional probability (P(AB) = P(A|B)P(B)) the above expression can
be represented as follows: (as event V p

i occurred indicates τa < τb already happened).
Therefore, we can avoid writing of τa < τb term inside of Pu(·) and Eu(·)

= eγa
∑np

i=0 Eu[eγV
+|V p

i ] · Pu(V p
i ) + eγb

∑nc
i=0 Eu[eγV

−|V c
i ] · Pu(V c

i )
Additionally, Eu[eγVp|V p

i ] represents the moment generating function of the overshoot
Vp i.e. Eu[eγVp|V p

i ] = eee
′
i(−γI−Tp)

−1)tp = ηpi (γ). Similarly, Eu[eγVc |V c
i ] =

eee
′
i(−γI−Tc)

−1)tc = ηci (γ). Moreover, Pu(V p
i ) is the probability of the event V p

i

hence Pu(V p
i ) = Pu(τa < τb, V

p
i ) = ζpi . Similar argument is valid for undershoot event.

Hence we obtain
Eu[eγRτ ] = eγa

∑np
i=0 η

p
i (γ)ζpi + eγb

∑nc
i=0 η

c
i (γ)ζci

Theorem 5.2. Assume that there exist n = np + nc + 2 distinct complex
numbers γi such that K(γi) = 0, i = 1, 2, · · · , n. Let ηp0(γ) = ηc0(γ) = 1 and
ηpi (γ) = Eu(eγVp|V p

i ) and ηci (γ) = Eu(eγVc |V c
i ) and let the solutions of the n

linear equations

eγiu = eγa
np∑
i=0

ηpi (γ)ζpi + eγb
nc∑
i=0

ηci (γ)ζci (18)

are ζp1 , · · · , ζpnp, ζ
c
1, · · · , ζcnc, ζ

p
0 , ζ

c
0.

12



Then

Pu[τa < τb, V
p
i ] =

np∑
i=0

ζpi (19a)

Pu[τb < τa, V
c
i ] =

nc∑
i=0

ζci (19b)

Proof. The proof is trivial. From (15) we see that K0 = 0. According to
Doobs optional stopping theorem we have EKτ = EK0. Applying this on
Kella-Whitt martingale given in (15) we obtain

EuK0 = K(γ)

∫ τ

0

eγRsds+ eγu − Eu[eγRτ ] (20)

However, we see that for all γ ∈ C, Eu
∫
{·} is an analytic function as

0 ≤ Eu
∫ τ

0

eγZsds ≤ Euτeγ(a+|b|)

for any γ ∈ C.
Now according to corollary (5.1) the Lundberg equation holds i.e. there exist
n complex number γi, i = 1, 2, ·, n such tat K(γ) = 0 which eliminates the
first term of the right side. Thus

EuK0 = eγu − Eu[eγRτ ]

However, EuK0 = K0 = 0 then the above expression simplifies to eγu =
Eu[eγRτ ]. Using lemma (5.1) above equation can be expressed as follows:

eγu = eγa
np∑
i=0

ηpi (γ)ζpi + eγb
nc∑
i=0

ηci (γ)ζci (21)

Which implies that for γ = γi, i = 1, 2, · · · , n there are n linear equations.
Additionally, ζpi ’s and ζci ’s are the only unknown in equation (21). Let’s define
ζpi = Eu[1τa<τb , V

p
i ] and ζci = Eu[1τb<τa , V c

i ], then it is clear that

Pu[τa < τb] = Eu[1τa<τb , V
p
i ]

= Eu[1τa<τb , V
p

0 ] + Eu[1τa<τb , V
p

1 ] + · · ·+ Eu[1τa<τb , V
p
np ]

=

np∑
i=0

ζpi

Similarly, Pu(τb < τa) =
∑nc

i=0 ζ
c
i .

However, taking b = 0 it is possible to obtain the probability of up-crossing
before ruin and vice-versa.

13



6 Example

Let the premiums, pi are of phase-type with representation (αp,Tp), where

Tp =

(
−4 0
0 −3

)
, αp =

(
2

7

5

7

)
And the claims, ci are also phase-type with representation

Tc =

(
−5 5
0 −3

)
, αc =

(
1

2

1

2

)
Graphical representation of the premium and claim sizes distributions are

as follows:

αp1

∆

αp2

4 3

αc1

∆

αc2

5

3

According to equation (4) density of premiums is

fp(x) =
15

7
e−3x +

8

7
e−4x (22)

and density of claims is

fc(x) =
21

4
e−3x − 15

4
e−5x (23)

For simplicity, let rate of the positive jumps, λp = 3 and rate of the negative
jumps, λc = 2. Then according to equation (9) Lévy exponent of our premium
process is

Kp(γ) = λp
(
αp (−γI−Tp)

−1 tp − 1
)

= 3

(
26γ − 7γ2

7(4− γ)(3− γ)

)
and Lévy exponent of our claim process is

Kc(γ) = 2

(
−2γ2 − 13γ

2(5 + γ)(3 + γ)

)

14



Moreover, considering µ = 0 (drift of B.M.) and σ2 = 1 (variance of B.M.),
we obtain Lévy exponent our risk process is

K(γ) =
γ2

2
+

78γ − 21γ2

7(4− γ)(3− γ)
− 2γ2 + 13γ

(5 + γ)(3 + γ)
(24)

Therefore, according to corollary (5.1) there are 6 complex numbers satis-
fying K(γi) = 0 which are γ1 = 0, γ2 = −0.0551665, γ3 = 3.59869, γ4 =
4.86516, γ5 = −4.70434− 0.97082i and γ6 = −4.70434 + 0.97082i.

Hence, according to (18), we have the following system of 6 linear equations

eγ1u = eγ1a{ηp0(γ1)ζp0 + ηp1(γ1)ζp1 + ηp2(γ1)ζp2}+ eγ1b{ηc0(γ1)ζc0 + ηc1(γ1)ζc1 + ηc2(γ1)ζc2}
eγ2u = eγ2a{ηp0(γ2)ζp0 + ηp1(γ2)ζp1 + ηp2(γ2)ζp2}+ eγ2b{ηc0(γ2)ζc0 + ηc1(γ2)ζc1 + ηc2(γ2)ζc2}
eγ3u = eγ3a{ηp0(γ3)ζp0 + ηp1(γ3)ζp1 + ηp2(γ3)ζp2}+ eγ3b{ηc0(γ3)ζc0 + ηc1(γ3)ζc1 + ηc2(γ3)ζc2}
eγ4u = eγ4a{ηp0(γ4)ζp0 + ηp1(γ4)ζp1 + ηp2(γ4)ζp2}+ eγ4b{ηc0(γ4)ζc0 + ηc1(γ4)ζc1 + ηc2(γ4)ζc2}
eγ5u = eγ5a{ηp0(γ5)ζp0 + ηp1(γ5)ζp1 + ηp2(γ5)ζp2}+ eγ5b{ηc0(γ5)ζc0 + ηc1(γ5)ζc1 + ηc2(γ5)ζc2}
eγ6u = eγ6a{ηp0(γ6)ζp0 + ηp1(γ6)ζp1 + ηp2(γ6)ζp2}+ eγ6b{ηc0(γ6)ζc0 + ηc1(γ6)ζc1 + ηc2(γ6)ζc2}

Additionally, according to the statement of theorem (5.2), we have

ηp0(γ) = ηc0(γ) = 1, ηp1(γ) =
4

4− γ
, ηp2(γ) =

3

3− γ
, ηc1(γ) =

15

(γ + 5)(γ + 3)
, and

ηc2(γ) =
3

(γ + 3)
.

By substituting the values of γi’s, η
p
i ’s, η

c
i ’s and by using a = 2, b = 0 in the

above system of linear equations, we obtain their following form
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eu
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( ζ
p 0
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−
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−

1
ζ
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+
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7 Conclusion

In this paper, we have assumed that the reserve of an insurer follows Lévy
process. However, if the Lévy process have both sided jumps, where both of
the jumps are of phase-type, then using numericl example, we see that the
theorem for probability of up-crossing before ruin and vice-versa given in [5]
works perfectly..
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