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Abstract: Due to data unavailability or irregularity at old ages in developing countries, the model 
life tables are used to estimate old ages mortality. Such procedure is not supposed to provide 
country-specific estimates, especially when the model life tables are not correctly used. Thereby, 
extrapolating the old ages mortality based on the trend observed at younger ages is assumed to 
provide more consistent results. In this paper, we compare some models to extend mortality rates 
beyond the age of 80 for the Algerian population. The resulted life expectancy at birth display an 
average gap of one year compared to official statistics.  
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1  Introduction 

The improvement of life expectancy in Algeria during the recent decades resulted from a reduction 
of mortality rates at all ages. Consequently to this improvement, the probability of surviving until 
the age of 60 years has improved from 0.82 in 1977 to 0.96 in 2014. Parallel to this, the size of the 
population aged 60 and over rose from 790,000 in 1966 to more than 2.5 million in 2008 according 
to the population censuses data. The size of the elderly will increase continuously during the 
coming decades. Thus, the old age mortality should be attentively considered as well as the 
mortality at adult ages.  

A life table describes the probability of dying of a cohort of individuals, at different ages, from 
birth till total extinction. The lack of mortality data and the weakness of the exposure to death risk 
beyond a certain age lead to some irregularities in mortality curves. For a long time, some classical 
mortality models initially performed to graduate mortality rates at adult ages, have been used to 
extend mortality to old ages. The most practical example in this sense is the fact that a Makeham-
type function was used by the United Nations Population Division to extend the model life tables 
(MLT) till the age of 85 years (UN, 1982). For the Coale-Demeny MLT revised in 1983, a 
Gompertzian function was used to extend mortality rates until 100 years old (Coale et al., 1983). 
Such a practice assumes that mortality rates will keep growing at old ages following the trend 
observed at adult ages. As mentioned in Heligman & Pollard (1980), after childhood and young 
ages, mortality rates can be represented by an exponential function as that proposed by Gompertz 
(1825). Parallel to this, a deceleration of mortality rates at old ages was noticed in many works 
starting from Gompertz (1825) and then Perks (1932) (Gavrilova & Gavrilov, 2014). By the late 
of the 20௧௛ century, the improvement of population life conditions in developed countries resulted 
in the improvement of life expectancy and the growth of the population of elderly. Furthermore, 
the improvement of data quality provided consistent databases for old ages mortality modeling. 
Coale & Guo (1989) confirmed mortality deceleration on the observation of mortality rates until 
the age of 100 for some countries (i.e., Netherlands, Japan, France, West Germany, Austria, 
Sweden, and Norway). This deceleration becomes evident starting from the age of 80 or 85 years 
(Coale & Kisker, 1990).  

For Algeria, the national life tables being published by the Office of National Statistics (ONS) 
starting from 2010 were closed-out at the age interval of 85 and older. For the period before 2010, 
this closure age was set at 80 years and older or lower. Based on the selected MLT, the 
corresponding life expectancy at the closure age is estimated. Combined with the younger ages 
mortality rates, the life expectancy at birth is concluded. 

The first step in all this process is to select an adequate MLT among the Coale-Demeny (CD) or 
the United Nations (UN) MLTs. The selection process is based on the comparison of the national 
mortality data, at adult ages, to the mortality pattern given by the different types of MLT. Between 
the two, African countries prefer to use the first ones to complete their mortality data ES84. 
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Mortality of the northern African countries is usually represented by the south type of CD life 
tables while the North type is used to describe the mortality pattern of sub-Saharan countries. 
However, this procedure implies much inadequacy compared to the use of the ordinary least 
squared deviations method (Ekanem & Som, 1984). This inadequacy emerges when joining the 
two mortality curves, at adult and older ages, coming from national statistics and MLT respectively. 

Our main objective is to reduce the variation of life expectancy due to changes in the closing out 
method and to give more homogeneous old age mortality surface for the Algerian population. The 
second objective is to provide readers with a general methodology to extend mortality to old ages 
for the Algerian population starting from adult mortality data. 

To this end, some old age mortality models will be evaluated and compared to extend mortality 
beyond the age of 80 years. Usually, starting from a certain age, e.g. 35, 40, or 45, mortality rates 
grow following an exponential function. This regularity of the observed trend allows for extending 
mortality rates to older ages. The quality of the extrapolation is related to the quality of the existing 
data and also to the age range used for model calibration. In the absence of observed data to be 
used for comparison, other criteria can be used to orient models calibration. Usually, an assumption 
about the surviving age limit can be defined. The age mortality pattern of the Algerian population 
has changed many times over the observed period. Thus, it is tough to find a unique model 
providing good fitting quality over the whole period and ensuring some adequacy either between 
males and females or regarding the year-to-year variation. 

2  Old ages mortality extrapolation methods 

Historically, different models have been proposed to extrapolate mortality rates to old ages. In what 
follows, we give a general overview of these methods. 

2.1  Gompertz-Makeham model (GPZ, MKM) 

For a long time, the classical mortality models have been used to extend mortality to old ages. 
Gompertz (1825) discovered that the force of mortality 𝜇௫ evolves exponentially with age ሺ𝑥ሻ: 

 𝜇̂௫ ൌ 𝛼 ∗ 𝛽௫ (1) 

Makeham (1867) enhanced this last model by adding a constant term (𝑐) representing the risk of 
death by accident not age dependent: 

 𝜇̂௫ ൌ 𝑐 ൅ 𝛼 ∗ 𝛽௫ (2) 

A Makeham-type function was used to extend the United Nation’s MLT beyond the age of 80 (UN, 
1982). The used function was expressed as: 
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 ln  ೙௤ොೣ
ଵି೙௤ොೣ

ൌ 𝐴 ൅ 𝐵 ∗ 𝑥 (3) 

With  ௡𝑞ො௫ representing the probability of dying between age 𝑥 and 𝑥 ൅ 𝑛. 

The observed trend of  ௡𝑞௫ between ages 50 and 75 was used to extend mortality rates to old ages. 
At higher ages, the risk to die by accident becomes negligible because old people are usually apart 
from any risky activity Gavrilov & Gavrilova (2011). In such a case, Makeham model does not 
provide any added value compared to the Gompertz model. 

 When we extend mortality only till the age of 100 years, the choice of the extrapolation method 
is of a little importance. Since the 1980s, life expectancy has improved as well as the number of 
centenarians (Buettner, 2002 ; Robine & Vaupel, 2001). Hereafter, the need became apparent for 
more adapted tools for old age mortality extrapolation. 

Following the significant improvement of life expectancy at birth as well as the quality of mortality 
data at older ages, it became possible to compares models to real data. It turned out that old age 
mortality does not follow a Gompertzian function, but slows down slightly. This mortality 
deceleration at older ages was observed on several populations. Many studies have tried to find a 
convincing explanation for it. Some researchers assumed it to be due to a selection process (Coale 
& Guo, 1989; Kannisto, 1992; Kannisto et al., 1994). On the other side, Gavrilov & Gavrilova 
(2011) have shown that there is no mortality deceleration at old ages and it is just the effect of the 
weakness of data quality at old ages which results in such an effect. In the unavailability of data 
allowing to verify these two hypotheses for the Algerian population, we assume that the first 
assumption is nearer to be real. 

2.2  Weibull’s model (WBL) 

 Weibull (1951) proposed the following formula: 

 𝜇̂௫ ൌ 𝛼 ∗ 𝑥ఉ (4) 

2.3  Helligman and Pollard model (HP) 

Heligman & Pollard (1980) is the only mortality model which fits mortality rates ሺ𝑞௫ሻ at all ages. 

 
௤ොೣ

ଵି௤ොೣ
ൌ 𝐴ሺ௫ା஻ሻ

೎
൅ 𝐷 ∗ 𝑒𝑥𝑝ሺെ𝐸ሺlnሺ𝑥ሻ െ lnሺ𝐹ሻሻଶ ൅ 𝐺 ∗ 𝐻௫ (5) 

Each of the three terms of the model fits the mortality at a defined age interval (Heligman & Pollard, 
1980). After the age of 40 or 50 years, the two first terms become useless and can be ignored. Then, 
the model can be written as: 
 𝑙𝑜𝑔𝑖𝑡ሾ𝑞ො௫ሿ ൌ 𝜋 ൅ 𝜃 ∗ 𝑥 (6) 
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with 𝜋 ൌ lnሺ𝐺ሻ and 𝜃 ൌ 𝑙𝑛ሺ𝐻ሻ. 

2.4  Coale-Guo and Coale-Kisker methods (CK) 

The main idea of the Coale-Guo model CG89 is that, at old ages, mortality rates keep growing with 
a decreasing growth rate. This deceleration is supposed to follow a linear trend. The growth rate of 
the death rates  ௡𝑚௫ from age to another was defined by: 

 𝑘௫ ൌ ln  ఱ௠ೣ

 ఱ௠ೣషఱ
 (7) 

𝑘௫ is supposed to increase between two consecutive ages by a constant 𝑅: 𝑘௫ାହ ൌ 𝑘௫ െ 𝑅. For 
two ages 𝑥 and 𝑥 ൅ 5 ∗ 𝑖, we can write : 𝑘௫ାହ∗௜ ൌ 𝑘௫ െ 𝑖 ∗ 𝑅. 

The Coale-Guo model was first applied to extend death rates beyond the age of 75 years until 110 
years. When 𝑘଼଴ is known, for 𝑥 ൒ 80, the death rate at age 𝑥 can be deduced from that of the 
previous age interval by the following formula: 

  ହ𝑚௫ାହ ൌହ 𝑚௫ ∗ expሺ𝑘଼଴ െ
ሺ௫ି଼଴ሻ

ହ
∗ 𝑅ሻ (8) 

As a general formula, we can write: 

  ହ𝑚଼଴ାହ∗௜ ൌହ 𝑚଻ହ ∗ expሺ𝑘଼଴ ൅ 𝑘଼଴ െ 𝑅 ൅ 𝑘଼଴ െ 2𝑅 ൅ 𝑘଼଴ െ 3𝑅൅. . .൅𝑘଼଴ െ 𝑖 ∗ 𝑅ሻ (9) 

This implies: 

  ହ𝑚௫ାହ∗௜ ൌହ 𝑚଻ହ ∗ expሺ𝑖 ∗ 𝑘଼଴ െ
௜ሺ௜ାଵሻ

ଶ
∗ 𝑅ሻ; 𝑖 ൌ 1,2,3. .. (10) 

The last death rate  ହ𝑚ଵ଴ହ can be deduced from  ହ𝑚଻ହ by using: 

  ହ𝑚ଵ଴ହ ൌହ 𝑚଻ହ ∗ expሺ6.𝐾଼଴ െ 15 ∗ 𝑅ሻ. 𝑖 (11) 

Authors have arbitrarily imposed the constraint: 

  ହ𝑚ଵ଴ହെହ𝑚଻ହ ൌ 0.66 (12) 

Coale & Kisker (1990) adapted the Coale-Guo formula to the case of single age’s mortality data : 

 𝜇̂௫ ൌ 𝜇̂௫ିଵ ∗ expሺ𝑘଼଴ ൅ 𝑠 ∗ ሺ𝑥 െ 80ሻሻ; 𝑥 ൌ 80,81, . . . ,109. (13) 

𝑘଼଴ represents the growth rate of mortality at 80 years. It is defined to be the average growth rate 
at the age range ሾ65, 80ሾ and can be calculated as follows: 

 𝑘଼଴ ൌ
୪୬ሺഋ

ෝఴబ
ഋෝలఱ

ሻ

ଵହ
 (14) 
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In some cases, the Coale-Kisker formula can lead to some incoherence regarding the male-female 
mortality evolution. This incoherence can be seen either as a crossover or an exaggerated 
divergence between the male and female extrapolated mortality curves. To offset this inconvenient, 
the authors have arbitrarily fixed the rates for a relatively high age (110 years): 

 𝜇̂ଵଵ଴ ൌ ൜
1    𝑓𝑜𝑟    𝑚𝑎𝑙𝑒𝑠,
0.8    𝑓𝑜𝑟    𝑓𝑒𝑚𝑎𝑙𝑒𝑠, (15) 

This leads to define 𝑆 which is equal to: 

 𝑠 ൌ െ
୪୬ሺ ഋ

ෝళవ
ഋෝభభబ

ሻାଷଵ∗௞ఴబ

ସ଺ହ
 (16) 

𝑠 in the Coale-Kikser model has the same interpretation as 𝑅 in the Coale-Guo formula. 

Finally, both of these methods are known as the Coale-Kisker model (CK) also called the quadratic 
mortality model (Roli, 2008; Thatcher, 1999). Accordingly, the CK model consists of writing the 
logarithm of the force of mortality as a quadratic function of age. However, this formulation is not 
used nor explained in the literature: 

 lnሺ𝜇̂௫ሻ ൌ 𝑎 ൅ 𝑏𝑥 ൅ 𝑐𝑥ଶ (17) 

The mortality growth rate can be expressed as: 

 𝑘଼଴ ൌ lnሺ ఓෝೣ
ఓෝೣషభ

ሻ ൌ 𝑎 ൅ 𝑏𝑥 ൅ 𝑐𝑥ଶ െ 𝑎 െ 𝑏ሺ𝑥 െ 1ሻ െ 𝑐ሺ𝑥 െ 1ሻଶ ൌ 𝑏 ൅ 𝑐ሺ2𝑥 െ 1ሻ (18) 

Considering a starting age of 80 years, we can write: 

 𝑘௫ െ 𝑘଼଴ ൌ 2 ∗ 𝑐 ∗ ሺ𝑥 െ 80ሻ (19) 

and that leads to the same formula seen earlier : 

 𝜇̂௫ ൌ 𝜇̂௫ିଵ ∗ expሺ𝑘଼଴ ൅ 2 ∗ 𝑐 ∗ ሺ𝑥 െ 80ሻሻ;     𝑥 ൌ 80,81, . . . ,109. (20) 

2.5  Perks, Logistic, Kannisto, Thatcher models (PRK, LOG, KST, THT) 

The use of logistic functions to graduate mortality curves was first introduced by Perks (1932). He 
proposed the following formula to fit the force of mortality with age: 

 𝜇̂௫ ൌ
ఈ∗௘ഁ∗ೣ

ଵାఊ∗௘ഁ∗ೣ
 (21) 

The general form of the logistic model can be written as 𝜇̂௫ ൌ 𝜃 ൅ ఒ∗ఈ∗௘ഁ∗ೣ

ଵାఈ∗௘ഁ∗ೣ
. When Thatcher et al. 

(1998) tried to use this model to fit old age mortality pattern of 13 developed countries, they found 
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that 𝜆 is very close to 1 (Thatcher, 1999). They concluded that the model can be simply written 
with 3 parameters: 

 𝜇̂௫ ൌ 𝜃 ൅ ఈ∗௘ഁ∗ೣ

ଵାఈ∗௘ഁ∗ೣ
 (22) 

At older ages, 𝜃 becomes negligible as the accident risk constant in Makeham’s model. Therefore, 
the previous formula can be simplified to be Kannisto (1992): 

 𝜇̂௫ ൎ
ఈ∗௘ഁ∗ೣ

ଵାఈ∗௘ഁ∗ೣ
 (23) 

in Logit form, we find: 
 𝑙𝑜𝑔𝑖𝑡ሺ𝜇̂௫ሻ ൌ lnሺ𝛼ሻ ൅ 𝛽 ∗ 𝑥 (24) 

Kannisto proposed this simplified version of the model unintentionally while reporting some 
findings. This model was reported in Thatcher et al. (1998) as Kannisto model. 

2.6  Denuit and Goderniaux method (DG) 

This method relies on a polynomial formula of order 3 of the log mortality rate: 

 lnሺ𝑞ො௫ሻ ൌ 𝑎 ൅ 𝑏𝑥 ൅ 𝑐𝑥ଶ (25) 

In the original article, the authors have set the survival age limit at 130 years. To respect this 
constraint, they imposed : 𝑞ො௫ ൌ 1. 

2.7  Comparison 

There are different ways to extend mortality to old ages. Two mortality measures can be used for 
this issue, i.e., 𝜇௫ and 𝑞௫. Gavrilov & Gavrilova (2011) explained the difference between these 
parameters and how the choice of the indicator can affect the final extrapolation results. At older 
ages, mortality rates reach a high level and keep growing slowly until the limit of 1, while 𝜇௫ keep 
growing without any constraints. For this, 𝜇௫  is more suitable for extrapolation to older ages. 
When reported to the semi-log scale, this last can easily be approximated by a straight line more 
than 𝑞௫. Another way to give more regular linear trend to mortality rates over age is to introduce 
the Logit which allows passing from a variation interval of [0,1] to ]-∞, +∞[. The third element is 
that there are principally two types of models: the transformed linear models and the transformed 
quadratic ones. 

Among the presented models, there are only two which are based on 𝑞௫, i.e., HP and DG models. 
The first proposes an extrapolation based on a linear trend of lnሺ𝑞௫ሻ, while the second aims to 
impose a quadratic form to 𝑙𝑜𝑔𝑖𝑡ሺ𝑞௫ሻ. The other models are all based on 𝜇௫. GPZ, MKM and 
WBL models express 𝜇௫ in a log-linear form. The CK model tries to extrapolate lnሺ𝜇௫ሻ using a 
quadratic function, while the logistic models (PRK, LOG, KST, THR models) try to approximate 
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𝑙𝑜𝑔𝑖𝑡ሺ𝜇௫ሻ to a linear function. In addition, two families of models can be specified in function of 
either any closure constraint is imposed or not. The models GPZ, MKM, WBL, LOG, KST, THT, 
PRK, and HP are supposed to be behavioral models since the extrapolated rates are just a result of 
the model calibration at younger ages. The CK and DG models are quadratic transformed models. 
The set of the age limit that they can lead to is huge and unrealistic in most cases. Thus, a closure 
age constraint is imposed in order to make the extrapolation results more realistic. 

3  Data and Method 

In this paper, we use the Algerian life tables published by the ONS during the period from 1977 to 
2014. For missing data, we use the estimates of Flici (2014). So, our database is composed of five-
age mortality rates from 0 to 75 years during the period [1977, 2014]. Figure 1 shows the mortality 
surfaces for males and females. 

Old ages mortality models are usually based on a single ages mortality description. For this, we 
interpolate the age-specific mortality rates (ASMRs) from the five-ages ones. Since, there is no 
perfect model to interpolate ASMRs at all ages, we use a mixture of two methods, namely the 
Karup-King and the Lagrange’s methods. The first one suits mortality at high ages but it gives bad 
results at young ages while the second is completely the adverse. The idea is to combine the two 
methods to join the interpolated curve obtained with Karup-King at high ages and that obtained 
with Lagrange’s method at low ages. The junction point is defined at the age providing the smallest 
distance between the two curves. 

 

Figure  1: Five-ages mortality surfaces (Algeria: 1977-2014). Source: ONS data completed by Flici 
(2014)  

Mortality models are conventionally compared based on the goodness-of-fit and the predictive 
capacity. The first criterion evaluates the fidelity of models estimates to the raw data, while the 
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second one assesses their ability to predict the mortality rates at older ages. In our case, we are not 
mainly interested in the quality of the fitting itself but more in that of the extrapolation results. 
Since the goodness-of-fit does not imply necessarily a good predictive capacity, this latter needs to 
be independently assessed by comparing a part of the extrapolated series to observed data. 
Unfortunately, data availability does not allow a relevant analysis in this sense. The observed data 
needs to be arranged in a way to allow evaluating both the goodness-of-fit and the predictive 
capacity. The more the compared age interval is larger, the more evaluation is relevant. We remind 
that 𝑞௫ are available until the age of 79 years until 2009 and until the age of 84 during the last five 
years. For this, we extend the age interval for model calibration until 74 years while the age interval 
[75, 84] is used to evaluate the predictive capacity. In regards to this later, we observe that data 
lengths are different for the periods before and after 2010. For the first period, the age interval to 
be used for such an evaluation is [75, 79] years while it passes to [75, 84] starting in 2010. Hence, 
the evaluation criterion needs to be set to consider all the ages with similar weight. We use the 
Mean Squared Error (MSE) for this issue. 

We remind that the six models are based on different mortality measures lnሺ𝜇௫ሻ; 𝑙𝑜𝑔𝑖𝑡ሺ𝜇௫ሻ and 
𝑙𝑜𝑔𝑖𝑡ሺ𝑞௫ሻ. To ensure the comparability of the models, the MSE is expressed in an unified mortality 
measure which is lnሺ𝑞௫ሻ. The goodness-of-fit can be evaluated on the age range ሾ𝑥, 74ሿ by: 

𝑀𝑆Eሾ୶,଻ସሿ ൌ
1

x ∗ t
෍

଻ସ

୶ୀଡ଼

෍

ଶ଴ଵସ

୲ୀଵଽ଻଻

ሾlnሺqො୶୲ሻ െ lnሺq୶୲ሻሿଶ 

To evaluate the predictive capacity of the different models, the MSE is estimated in two steps: 
First, we calculate the MSE corresponding to each age interval [75, 79] and [80, 84] by: 

𝑀𝑆𝐸ሾ଻ହ,଻ଽሿ ൌ
1

5 ∗ 38
෍

଻ଽ

௫ୀ଻ହ

෍

ଶ଴ଵସ

௧ୀଵଽ଻଻

ሾlnሺ𝑞ො௫௧ሻ െ lnሺ𝑞௫௧ሻሿଶ 

and 

𝑀𝑆𝐸ሾ଼଴,଼ସሿ ൌ
1

5 ∗ 5
෍

଼ସ

௫ୀ଼଴

෍

ଶ଴ଵସ

௧ୀଶ଴ଵ଴

ሾlnሺ𝑞ො௫௧ሻ െ lnሺ𝑞௫௧ሻሿଶ 

Then, the weighted MSE (WMSE) corresponding to the age interval [75, 84] is calculated by: 

 𝑊𝑀𝑆𝐸ሾ଻ହ,଼ସሿ ൌ
ଵ

ଶ
ሺ𝑀𝑆𝐸ሾ଻ହ,଻ଽሿ ൅ 𝑀𝑆𝐸ሾ଼଴,଼ସሿሻ  

Mortality rates will be independently extrapolated for male, female, and global populations. First, 
the six models are estimated without setting any age limit constraint. Additionally to the goodness-
of-fit and the predictive capacity, some qualitative criteria are added to enhance the evaluation 
aiming to make the extrapolation results consistent with some general rules: 
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    1.  Mortality rates keep increasing with age. That allows to write: 𝑞ො௫ାଵ ൐ 𝑞ො௫;     ∀𝑥 ൒ 75. We 
introduce this element because the quadratic transformed models (DG and CK) can lead in some 
cases to a reversal in the mortality rates trend beyond a certain age;  

    2.  Since extrapolation is made independently for male, female, and global populations, the 
extrapolated mortality rates for the both sexes population must be closer to the weighted average 
of male and female rates. Given that the structure of the Algerian population aged 70 and older is 

equidistributed by sex, we can write, for a fixed year ሺ𝑡ሻ: 𝑞ො௫௕௢௧௛ ൌ
ሺ௤ොೣ೘ା௤ොೣ

೑ሻ

ଶ
;     ∀𝑥 ൒ 75. In the case 

of a change in the sex distribution at very advanced ages in any way, mortality rates of the both-
sexes population 𝑞ො௫௕௢௧௛ must be situated in the interval between the male and female rates. That 

implies : 𝑞ො௫௕௢௧௛ ∈ ሾ𝑞ො௫
௙ െ 𝑞ො௫௠ሿ;  

    3.  Male mortality rates are higher than the female ones : 𝑞ො௫௠ ൐ 𝑞ො௫
௙;     ∀𝑥 ൒ 75. 

One last last element which can enhance the evaluation of the extrapolation is the age limit 
predicted by the model. Theoretically, the age limit ሺ𝑤ሻ is attained when mortality rates rise to the 
value of 1: 𝑞ො௪ ൌ 1. A model is coherent when the predicted age limit is near to the observed 
maximum surviving age. For the Algerian population and according to the MICS IV (Multi 
Indicators Cluster Survey) results, maximal surviving ages of 110.5 and 112.5 years old were 
observed for males and females respectively (Flici and Hammouda, 2016). That does not represent 
an estimate of the surviving age limit of the Algerian population, but just a minimal of the interval 
where this age can be situated. 

4  Results and Discussion 

4.1  Model selection 

4.1.1  Goodness-of-fit and predictive capacity 

In most cases, the goodness-of-fit is widely related to the length of age interval used to calibrate a 
model. Usually, the quality is higher as much the data length is shorter, but at the expenses of 
robustness. Thus, it is necessary to define a fitting criterion which combines the two. The use of 
the Bayesian Information Criterion (BIC) is more suitable for such purposes since it considers, in 
addition to the gap between predictions and observations, the number of parameters and the number 
of observations. Even if the BIC was first proposed to suit the Likelihood Estimation method 
(Schwarz, 1978), the formula was adapted later to the Least Squares Errors estimation method 
(Burnham & Anderson, 1998; Hansen, 2007). The adapted formula can be written as: 

 𝐵𝐼𝐶 ൌ 𝑛 ∗ lnሺଵ
௡
𝑆𝑆𝐸ሻ ൅ 𝑘 ∗ lnሺ𝑛ሻ (26) 

with 𝑛 representing the number of observations and 𝑘 the number of parameters in the model. 
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In our case, the BIC is used to evaluate both the fitting quality and the predictive capacity of the 
models. For each model, these qualities are related to the age range used for calibration. However, 
it is not evident to define a common age range which ensures the best quality for all models. Also, 
there is practically no best model in all situations. Accordingly, each model is calibrated on various 
age ranges, i.e., [40, 74], [45, 74], [50, 74], [55, 74], and [60, 74], then extrapolated beyond the age 
75. The models are ranked according to the two criteria. Results are presented in Table 1. 

Table  1: Models evaluation and comparison – BIC 

  Males 

   Age Range for model calibration / Age range to evaluate the Predictive Capacity   Rank 

Model  [40,74]  [75,84] [45,74]   [75,84] [50,74]  [75,84] [55,74]  [75,84] [60,74]  [75,84]  GOF PC 

DG   -173.4*  -50.6   -163.8  -50.8  -137.5  -53.8**  -107.7  -45.0  -81.2  -46.1  2 1 

HP   -173.0*  -29.2   -165.4   -33.7   -138.1  -35.9   -109.8  -37.3**  -89.8   -36.6  4 4 

GPZ   -174.0*  -31.3   -165.9   -35.5   -138.5  -35.8   -110.1  -39.1**  -90.0   -37.8  3 3 

WBL  -166.1*  -16.0   -141.7   -16.0   -125.9  -20.3   -105.2  -23.9   -86.8   -27.0** 6 6 

CK   -178.3*  -46.9   -157.4   -45.6   -131.9  -45.9   -102.8  -46.9   -75.6   -48.4** 1 2 

KST   -171.9*  -28.7  -164.8   -32.1   -137.2  -34.2   -109.6  -35.8**  -89.7   -35.5  5 5 

 Females 

   Age Range for model calibration / Age range to evaluate the Predictive Capacity   Rank 

Model  [40,74]  [75,84] [45,74]   [75,84] [50-74]  [75,84] [55,74]  [75,84] [60,74]  [75,84]  GOF PC 

DG   -152.1*  -24.8   -139.7   -23.9   -114.5  -32.6**  -95.4   -29.5   -82.1   -31.1  2 2 

 HP   -144.1*  -13.6   -140.4   -16.5   -121.6  -20.1   -98.0   -23.1   -84.4   -26.3** 4 4 

GPZ   -144.8*  -14.2   -141.1   -17.1   -122.0  -20.8   -98.2   -23.8   -84.4   -27.0** 3 3 

WBL  -115.9   -3.5   -119.3   -7.0   -110.3  -11.0   -93.3   -15.1   -81.9   -19.4** 6 6 

CK   -152.3*  -22.8   -139.1  -22.1   -115.3  -33.4**  -95.0  -27.9   -69.8   -27.6  1 1 

KST   -141.3*  -13.1  -139.8   -16.0   -121.2  -19.3   -79.8   -22.4   -84.3   -25.6** 5 5 

 Both sexes 

   Age Range for model calibration / Age range to evaluate the Predictive Capacity   Rank 

Model  [40,74]  [75,84] [45,74]   [75,84] [50,74]  [75,84] [55,74]  [75,84] [60,74]  [75,84]  GOF PC 

DG   -169.4*  -36.1   -150.7  -35.2   -124.1 -35.7  -96.7  -36.7  -71.8  -37.5**  1 2 

HP   -160.2*  -20.6   -155.9   -23.9   -132.1  -26.9   -105.6  -29.4   -90.7   -31.2** 4 4 

GPZ   -161.2*  -21.5   -156.6   -24.9   -132.5  -28.1   -105.9  -30.5   -90.9   -32.2** 3 3 

WBL  -126.5   -7.3   -130.9*  -11.2   -118.6  -15.3   -100.0  -19.2   -87.1   -23.0** 6 6 

CK   -165.8*  -30.6   -161.3   -38.7   -133.7  -40.4   -103.8  -40.5**  -76.6   -40.0  2 1 

KST   -159.2*  -19.7  -155.0   -23.0   -131.5  -25.9   -105.3  -28.3   -90.5   -30.3** 5 5 

Each model is estimated and evaluated on 5 different age intervals. The BIC is calculated for the age 
intervals [x, 74] and [75, 84] as indicators of the goodness-of-fit and the predictive capacity. ሺ∗ሻ: The age 
interval providing the best fitting quality. ሺ∗∗ሻ: The age interval leading to the best predictive capacity. 
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According to Table 1, the rank of the six models changes according to the age interval used to 
calibrate the models. However, some evidence appears clearly: The three best models for fitting 
and extrapolating mortality rates are the DG, CK, and GPZ models. Since each model leads to its 
best quality in a specific age interval, which is not common for all models, we propose using l [50, 
74] to calibrate all models. That is because it is the only interval which allows keeping the initial 
models ranking obtained on the three populations. Figure 2 shows the mortality rates extrapolated 
to old ages with the six models. 

 

Figure  2: Models comparison 

The quadratic models (DG and CK) provide better quality compared to the linear transformed 
models. However, models comparison needs to be assessed by using complementary criteria as the 
male-female coherence, the predicted age limit, and the coherence between single sexes and both-
sexes extrapolations. 

4.1.2  Expected Mortality Sex Ratio 

The observation of the Mortality Sex Ratio (MSR) calculated on the extrapolated mortality rates 
beyond the age of 75 for the period from 1977 to 2014 are shown in Figure 3 separately for each 
of the six models. 

At older ages, when mortality rates increase to approximately 1, the male and female mortality 
rates converge increasingly to each other. Consequently, the MSR must converge to 1. Regarding 
this criterion, the KST, HP, and GPZ models have led to more coherent results compared to the 
three other ones. 
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Figure  3: Extrapolated Mortality Sex Ratio with the six models 

4.1.3  Coherence between single sexes and both-sexes expected mortality rates 

To evaluate the coherence between single sexes and both-sexes estimates, we calculate the part of 
cases where both-sexes the predicted mortality rates for both-sexes population are situated out of 
the interval between the male and the female rates. The more this failure ratio is lower, the more 
the extrapolation is coherent. Results are presented in Figure 4. 

 

Figure  4: Failure ratio between single-sexes and both-sexes predicted mortality rates 

The DG and WBL models led to the most failed results when single sexes are compared to both-
sexes predicted mortality rates. The other models give an acceptable failure ratio under 20% 
increasing beyond the age of 100 to around 70%. The CK model gives the less important failure 
ratio. 

4.1.4  Expected age limit 

Another way to evaluate the coherence of the extrapolated mortality rates is to analyze the age limit 
predicted by the different models. This later represents the age 𝑥 for which 𝑞௫  is equal to 1. 
Results show some differences between the different models. By the age of 130, the HP, WBL, and 
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KST models give a mortality rate under 1. The age limit predicted by the DG model is 104, 103, 
and 106 years on average for males, females, and both-sexes populations, respectively. For the CK 
model, the predicted age limit is situated between 109 and 111 years old. In adverse, the GPZ 
model leads to a higher age limit equal to 117 on average. 

According to the maximum surviving age observed for the Algerian population until now, the GPZ 
model seems to be the most consistent model according to this criterion. Resulting from the MICS 
survey, the maximum surviving age was equal to 112.5 for females and 110.5 for males FH16. This 
survey is far to provide an accurate estimate of the age limit of the Algerian population since it is 
not exhaustive compared to civil registration data, but it allows to fix the lowest bound of the age 
limit estimate. Also, we must consider the future evolution of the age limit since longevity keeps 
increasing. The age limit is defined to be the age which can not be surpassed by any human being 
in a certain geographic area. Denuit & Goderniaux (2005) supposed this age to be equal to 130 for 
the developed countries. For developing countries, we can assume a lower age limit. To this end, 
we consider 120 as a reasonable limit for the Algerian population. 

4.1.5  Results discussion 

We have seen through this comparison that the quadratic models give a better fitting quality and 
predictive capacity compared to the linear transformed models. The GPZ model makes an 
exception of this rule. The study of the age limit predicted by the different models confirmed this 
finding. The comparison based on other criteria has shown different judgments. Generally, when 
considering other comparison criteria, i.e., the coherence between the single sexes and both-sexes 
estimates and the male-female coherence, the rank overturns. The GPZ model displays a good score 
in all situations. 

The quadratic models, of CK and DG, display some incoherence between either males and females 
or single-sexes and global population estimates. Contrary to the linear transformed models, the 
quadratic ones can lead to various possible trajectories of mortality rates from age 80 to the age 
limit. To avoid incoherence, some constraints need to be imposed either as a surviving age limit 
(Denuit & Goderniaux, 2005) or as a fixed mortality rate at any high age (Coale & Kisker, 1990). 
Such a constraint might avoid a crossover of the extrapolated mortality curves considered either 
from a year-to-year evolution or from a gender differential comparison (Buettner, 2002). 

In what follows, we keep working with 3 models, i.e., the models of DG and CK with 120 years as 
an age limit, and the GPZ model. 

4.2  Adding some constraints 

4.2.1  Age limit constraint 

Here, DG and CK models are re-estimated by imposing 120 years as an age limit. This additive 
condition has to impair the fitting quality of these models. To recover such a lack in fitting quality 
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and to keep the two quadratic models within the same performance as the GPZ model, we reduce 
the length of the age range used to calibrate the two models. We observe that when the DG and CK 
models are calibrated on the age interval [60, 79], they give approximately the same fitting quality 
as the GPZ model calibrated on the age interval [50, 79]. The results are given in Figure 5. 

 

Figure  5: Old age mortality extrapolation with an age limit constraint 

The three models lead approximately to similar extrapolation results. The coherence criteria are 
supposed to perform models comparison. Figures 6 and 7 show respectively the MSR and the 
Failure ratio obtained after having imposed the age limit constraint. 

 

Figure  6: Mortality Sex Ratio under age limit constraint 

 

Figure  7: Failure Ratio under age limit constraint 

According to the coherence criteria, the model of CK is better than the models of DG and GPZ. 
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The expected MSR converges to 1 more quickly in the first model compared to the second ones. 
For the coherence between singles sexes and both sexes extrapolations, the increasing trend of the 
failure ratio can be explained by the fact that at near the age limit, all mortality rates converge to 
1. Consequently, the difference between the male, female, and the combined sexes mortality rates 
become as smaller as the age limit nears. However, to improve the quality of the extrapolation 
further, we impose some additional constraints about the comparative evolution of the male, 
female, and combined sexes extrapolated rates. 

4.2.2  Coherence constraints 

Here, we impose two additional constraints; the first aims to keep the female mortality under the 
male mortality while the second tries to keep the combined sexes mortality estimates in between 
the male and female ones. 

We notice that the first constraint could not be fully respected for all years. Some years of the 
period before 1994 have marked a slight female over mortality, or even not, a significant decrease 
in the MSR by the end of the age interval used for models calibration. Since extrapolation results 
are just an extension of what is observed at younger ages, a female over mortality could not be 
avoided in the extrapolation results. 

The second constraint, concerning the coherence between the combined-sexes and the single-sexes 
estimates, was fully respected without affecting significantly the quality of the fitting. 

4.3  Final results 

After imposing all the necessary constraints on the extrapolation process, we conclude that the 
three models: GPZ, CK and CG give similar quality regarding the evaluation criteria. Therefore, it 
is very difficult to decide whether one model is more appropriate than the others. The quadratic 
models allow more flexibility in old age mortality extrapolation while ensuring a good fitting. 
When the age limit constraint is imposed, the extended mortality surface shows a high regularity. 
The GPZ model have shown a good performance regarding all the selection criteria except that the 
use of unfitted adult age mortality surface for its calibration have led to unstable expected age limit 
series. This disadvantage does not appear in the case of quadratic models by imposing a common 
age limit constraint for all years. Consequently, the GPZ model can be a perfect to extrapolate old 
age mortality on a fitted mortality surface. As a result and given that the CK model provide better 
quality compared to the DG model on the basis of the other selection criteria, we decided to adopt 
the CK model to extrapolate old age mortality for the Algerian mortality surface. The extended 
mortality surfaces are shown in Figure 8. 
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Figure  8: Extended mortality surfaces 𝑙𝑛ሺ𝑞௫௧ሻ for males, females and both sexes populations (1977-
2014) 

As we have already pointed out, the life expectancy at birth is largely related to how the life tables 
are closed out. Figure 9 shows a comparison of the life expectancy at birth issued from national 
statistics as well as the re-estimated series. 

 

Figure  9: Re-estimated life expectancy compared to official statistics 

The re-estimated life expectancy is slightly higher than the values included in the ONS official 
publications. The average gap in this sense is around 0.9 year for males and 1.2 year for females. 

5  Conclusion 

We have seen along this paper the advantages of the extrapolation approach to close out the 
Algerian life tables compared to the use of the MLT as an external reference. The advantage of the 
first approach is to allow extending the mortality pattern beyond the usual closure age until the 
surviving age limit. These details are generally needed in actuarial calculations and population 
forecasts. Because of the information’s lack and unreliability, such a detail is usually not included 
in official life tables which are closed out at early ages. Only the residual life expectancy at the 
closure age is published to summarize the mortality pattern for the ages beyond. In adverse, the 
quality of the estimates resulted from the use of the MLT to close-out national life tables is very 
related to the adequacy of the selected MLT with national data. Since that, a wrong use of the MLT 
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may lead to unrealistic estimated life expectancy at the closure age. We have seen in the 
introduction of this work some evidences concerning the wrong use of MLT in the case of some 
African countries (Ekanem & Som, 1984). 

In this paper, we proposed another approach to close-out the Algerian official life tables ensuring 
more accuracy, adequacy and regularity. Our approach was to estimate the old age mortality by 
extrapolating the observed mortality trend at adult ages. A set of old age mortality models were 
presented and compared for this issue, i.e., Gompertz (1825),Weibull (1951), Kannisto (1992), 
Heligman & Pollard (1980), Coale & Kisker (1990), and Denuit & Goderniaux (2005). Models 
evaluation and selection were based on a set of criteria: the goodness of fit, the predictive capacity, 
the predicted age limit, the coherence between male and female mortality, and the coherence 
between single sexes and both sexes’ estimates. In the first selection stage, three models were 
selected, i.e., the CK, DG and GPZ model. To enhance the quality of the estimates, we imposed 
the age of 120 years old as an age limit constraint for the quadratic models (CK and DG) and other 
constraints to ensure coherence in male vs female, single vs both sexes extrapolations. In final, we 
concluded that the three models lead to similar results. On the basis of the age limit expected by 
the three models, the GPZ model was excluded from the comparison. Among the two quadratic 
models, the CK model marked better quality than the DG model regarding the male vs female and 
single vs both sexes coherence. Once the old age mortality rates were extended until the age 120 
with the CK model, life expectancy at birth was re-estimated. The comparison to the life 
expectancy at birth in national statistics showed that our method leads globally to a gain of about 
1 year in average on the whole period [1977, 2014]. Also, the obtained series shows more regularity 
in terms of the time evolution trends. Finally, we would like to highlight the importance of closing 
out the Algerian life table by extrapolating the observed mortality trend at adult ages rather than 
the use of MLT as an external reference. This latter approach allows to reduce irregularities in the 
mortality indicators time evolution series which is supposed to suit perfectly a pertinent analysis 
of mortality natural evolution. Also, the presented methodology provides readers a way to 
extrapolate mortality to old ages in the Algerian context. 
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