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1. Executive Summary 

Vehicle collisions have been one of the leading causes of accident al death in the US. 
Specifically, we notice that a disproportionate number of national fatal collisions (10%) occur in 
California. We also notice that this trend continues for various severities of collisions ranging 
from “property damage only” to “severe injury” and “fatal”.  To understand the cause of different 
types of collisions, we seek to create a mathematical model  to analyze the extent to which 
various climate, behavioral, and location factors  impact the severity of vehicle crashes in 
California and generate subsequent insights that provide a comprehensive analysis of this 
issue. 

Using data from the SWITRS database collected by the California Highway Patrol and 
associates, we selected several factors about the accident related to environmental conditions 
such as climate information, road condition, lighting, time of day, road surface as well as driver 
information/behavior like age, gender, cellphone in use, drug influence,  and alcohol influence 
among others. After conducting data validation and cleaning, we conducted the density-based 
algorithm DBSCAN to remove geographic outliers and focus on regions with high concentrations 
of accidents. Using this data, we characterize the frequency of different collision severity and 
trends over time. As a result, we predicted that col lision frequency will rise as the economy 
improves in 2022 and beyond. We used the factors of these cases to construct a Random 
Forest, Decision Tree, and Naïve Bayes models to identify the most important factors affecting 
accident severity and have confidence in those results by providing different insights into the 
data. Exploratory Factor Analysis showed that our factors could be combined into five unrelated 
components and could account for 71.0% of the models’ variation. 

Subsequently, we explored the three most influential variables indicated by these models to 
conduct a frequency analysis to determine the specific aspects of these variables that cause 
certain severities to occur. Coupling these results with a geospatial analysis of fatal accidents 
gave information on the specific regions where severe accidents commonly occur. We also 
identified high risk groups for e.g., young drivers, impaired drivers etc. and large private 
insurers, impoverished individuals , and local businesses.  

Based on our analysis, we provided recommendations to both ins urers and policymakers in 
California. We suggest the continuation of insurance programs targeted towards low -income 
families who would be unable to pay the premiums of liability insurance. Additionally, the use of 
improved public transportation practices in the “accident hotspots” described can bring down 
high collision periods. Also, the extension of graduated licensing practices in California can help 
more safely introduce driving to inexperienced learners and decrease the risk for these drivers. 
As severities and collisions increase in the coming years, we hope to make Californian roads a 
safer place for all drivers. 
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2. Background Information 

Automotive transportation has always been the backbone of the American economy since the 
mass production of Henry Ford’s Model T in 1908. In 2019, there are 276 million registered 
vehicles in the United States and 91% of American families have access to a vehicle . (Borrelli, 
2021). As a result, it has altered the American lifestyle and economy by improving accessibility 
to goods and services as well as creating a larger market for manufacturers and producers.  In 
2016, $2.8 trillion in goods were shipped to and from sites in California, mostly by truck  (TRIP, 
2016). The utility of the automobile created a boom for the industry. For example, the growth of 
the automobile industry created 3 million jobs in the US (USBLS, 2022) and accounts for 3% of 
Americas GDP (Sky, 2021). 

However, the industry has also brought with it a higher risk of injury and fatality.  In 2019, there 
was an estimated 6.8 million police reported crashes across the United States, where 2 .7 
million people were reported injured and 36,096 reported fatal  (NCSA, NHTSA , US-DOT, 
2019). This trend is especially true in California, known to be the state with the highest collision 
and fatality rates in the country. In 2019 alone, there were 3,606 fatal and 74,000 injurious 
crashes in California. In addition, there were 174,000 non-injurious crashes leading to property 
damage only (PDO) (CHP, California, 2022). In total, California accounted for almost 9% of total 
number of crashes in America. It is 4 th leading cause of death in the country and the 10 th 
leading cause of death in the world (NCHS,CDC, 2022). 

In a collision, the primary persons at risk are the drivers and others directly involved. The cost 
of collision increases exponentially depending on the severity of the crash. Individual medical 
bills, for instance, can range from $3,100 for non-injurious crash to $26,000 for severe injuries. 
In 2010, US economy spent around $23.4 Billion in medical cost for these injuries (Lawrence, 
Miller, Zaloshnja, & Lawrence, 2015). This could be even more expensive and sometimes 
financially disastrous for the uninsured driver  (NCIPC, CDC, 2017). In addition, a severe injury 
can lead to disability, loss of income, and reduced quality of life. In 2019 Americans spent over 
one million days in the hospital each year from crash injuries.  In 2012, more than 2.5 million 
Americans went to emergency and nearly 200,000 were then hospitalized for the same. Lifetime 
work loss due to 2012 crash injuries cost an estimated $33 billion . (NCIPC, CDC, 2017)  

Additionally, the effect of a severe crash is felt not only by the involved parties, but also other 
vehicles on the road. In 2010, congestion cost due to vehicle crash including travel delay, fuel 
usage, and environmental impact totaled $28 Billion (Lawrence, Miller, Zaloshnja, & Lawrence, 
2015). Employers and corporations are also at risk, in the form of work disruption, the cost of 
supporting employees, and the disruption the supply chain.  Total economic cost of accidents in 
2010 is estimated to be $242 billion (Lawrence, Miller, Zaloshnja, & Lawrence, 2015) . 

As mentioned before, fatality is not the only outcome of a collision. Instead, collisions have 
severities that indicate the seriousness of an accident and help to quantify different risks posed 
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to a driver. While collisions are naturally randomly occurring  events, the severities of those 
collisions are influenced by several factors surrounding the crash such as weather conditions, 
the state of the road, traffic congestion, and the geographic location of the accident . Another 
factor is driver characteristics such as age, gender, maturity etc. and his/her behavior.  
Additionally, the risk for drivers can be magnified in some areas of California over others. This 
is evident in certain cities such as Los Angeles  containing 55,350 car accidents (20% of CA 
accidents in 2016) (Citywide Law Group, 2022). Hence, the necessity of safe transportation and 
the danger of accidents in California cannot be understated.  

To protect these drivers from the devastating physical and fiscal effects of c ollisions, auto 
insurance has been mandated by the state of California to ensure every driver has at least 
basic liability protection. For those who cannot afford the premiums for liability can purchase 
them from the state at a lower cost. Automotive insurance is vital towards the well -being of the 
drivers because it provides them with financial security while driving. Drivers may choose to opt 
for additional insurance plans with different coverages based on personal need and risk 
appetite. This includes collision insurance, which covers damages towards the vehicle, med -
pay, which covers the medical costs of the driver, and non /underinsured coverage, which covers 
the cost of repair of medical bills when the driver at -fault does not have the insurance to pay for 
the victim’s damages. These plans are written and insured by private companies who are 
licensed to operate in California. In 2019, the California automotive insurance industry wrote 
more than $33 billion in premium with a loss ratio of 65.50% (CDI, 2019). Hence, the risk on 
Californian roads does not only belong with the drivers, but also to the companies that insure 
them.  

In summary, California experiences the largest number of traffic accidents and highest number 
of fatal accidents anywhere in the country. The risk of accidents affects not just the drivers and 
other involved, but also others stuck in traffic, insurance companies , and the economy at large. 
As a result, being able to predict the severity of collisions based on factors surrounding the 
accident is useful for all stakeholders. The paper attempts to analyze the extent to which 
various climate, behavioral, and location factors affect the severity of vehicle crashes. Also, 
knowing the factors that are most impactful in controlling severity can help guide appropriate 
government policies and inform local council to judicially apply the money allocated for 
infrastructure development.  

3. Data Methodology 

Effective analysis of traffic accidents in California and the impact of conditions leading to it, 
requires a comprehensive accident dataset covering the whole state with severity classification, 
along with location and other environmental factors. We used the Statewide Integrated Traff ic 
Records System - SWITRS (CHP, California, 2022) database which collects, and processes 
data gathered from a collision scene. It is created and maintained by the California Highway 
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Patrol (CHP) and the Allied Agencies. Since it contains fields such as the exact location of the 
collision, as well as collision severity on a case-by-case basis; and covers collisions from 2001 
to 2021, we use this as our primary dataset (Gude, 2021). 

We also considered “Fatality Analysis and Reporting System” (FARS) (NHTSA, US-DOT, 2022) 
database from Nation Highway Traffic and Safety Administration (NHTSA), which is a 
nationwide census providing yearly data regarding fatal injuries suffered in motor vehicle traffic 
crashes from 1975 to present. While having a very diverse database of many fac tors, it only 
applied to fatal accidents which did not follow the goal of classifying multiple severity of 
accidents. However, we this data to conduct a regional risk analysis for fatal accidents.  

We also considered NHTSA’s Crash Report Sampling System database (NHTSA, 2022) which, 
while containing distinct severities of accidents, did not include the precise location of the 
crash, a crucial factor of our model. As a result, we concluded that the SWITRS database would 
best suit our goals. 

3.1. Data Identification and Categories  

The California Highway Patrol has recorded a large dataset regarding the state and causes of 
accidents in the SWITRS database. We selected the collision severity classification from the 
dataset as the dependent variable. It is the quantification of the impact intensity and an 
indicator of the probability of injury and potential loss. Although many different metrics are used  

Table 1: Collision Severity on KABCO scale 

Values Definition Description 

1 
Property 
Damage only 
(PDO) 

There were no apparent injuries involved in the crash. If a party is 
transported and is subsequently examined and found to have no 
injuries. 

2 
Complaint of 
Pain 

This classification could contain authentic internal or other non -visible 
injuries, as well as fraudulent claims of injury. This also includes persons 
who are dazed, confused, incoherent, or have been unconscious but 
recovered 

3 
Other Visible 
Injury 

Injuries to victims were evident to officers at the scene, but they were 
non-disabling lacerations, scrapes, places where the body has received a 
blow (black eyes and bloody noses), or minor bruises.  

4 Severe Injury 
An injury other than a fatal injury which results in broken bones, 
dislocated or distorted limbs, severe lacerations, or unconsciousness at 
or when taken from the collision scene.   

5 Fatal 
Death because of injury sustained in a collision or an injury resulting in 
death within 30 days of the collision. This includes death of fetus  
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to classify the severity of accidents across the US, the SWITRS database categorizes the 
severity of each accident on a California KABCO scale  (FHWA, US-DOT, 2017) of property 
damage only (1) to a fatal crash (5) as shown in Table 1. 

The SWITRS database contains large number of factors. For the purposes of this paper, we 
select only the driver of the party at fault for every crash because only the circumstances and 
situation around that driver is relevant to the analysis on the cause of the crash. Hence, we 
selected only the factors related to the environmental conditions , the driver behavior, and the 
location of the crash. These factors are listed in Table 2 and explained Appendix 9.1 in detail. 

Table 2: Factors affecting collision severity 

Factor Description Data Type 

Age Age of the driver at the time of collision Ratio 

Alcohol involved Indicates collision involved a party that had been drinking Comparative 

Cellphone in use Classification based on if the party is using cell phone Comparative 

Collision Time The time when the collision occurred (24 hr. time) Ratio 

Financial 
responsibility 

Classification based on whether the party showed proof of insurance at 
the time of collision 

Comparative 

Intersection Classification based if collision occurred in an intersection  Comparative 

Intersection Type Classification based on the type of intersection the collision occurred Comparative 

Latitude Y- coordinate of the geocoded location of the collision Comparative 

Longitude X- coordinate of the geocoded location of the collision Comparative 

Lighting Condition Classification based on how bright location is at the time of collision Comparative 

Party drug 
Impairment 

Classification based on physical or drug induced impairment Comparative 

Party gender Primary party’s gender Classification Nominal 

Population Population size classification at the collision zip code Comparative 

Road Condition Classification based on road condition  Nominal 

Road Surface 
Classification based on slipperiness of the road at the time of the 
collision 

Comparative 

Vehicle make Classification based on the vehicle make of the primary party’s vehicle Nominal 

Vehicle year Model year of the party’s vehicle Interval 

Weather Classification based weather condition at the time of collision  Comparative 
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3.2. Data Reliability Evaluation 

As observed before, SWITRS database has many fields that describe the crash, parties 
involved, and individual persons. We started by collating the relevant fields into a single table  
containing about nine million unique cases of accident data from the year s 2000 – 2021 as 
explained in Appendix 2. We then removed all cases with fields containing nulls. By directly 
removing, instead of imputing missing data, we were able to conduct under-sampling after data 
cleanup, without any risk of data leakage between training and testing datasets. After that, the 
remaining fields containing unknown values were recoded appropriately.  

Other factors, such as age, were checked for any possible correlations between extreme values 
and accident severity. We removed the outliers determined by a 95% confidence level or a z-
score over 1.96. This resulted in a range of 16 to 90 years as shown in Figure 1. Similarly, the 
SWITRS database holds 123 different vehicle makes. However , a frequency distribution of 
collision vs vehicle-make (as shown in Figure 2) exhibited a right skewed normal distribution. 
Using a Pareto chart, we found the top 40 vehicle make categories are responsible for 99% of 
total collisions in California and used these when executing our model.  
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Figure 1:Age Distribution in SWITRS database 

Figure 2: Vehicle make distribution in SWITRS database  
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3.3. Data Processing and Clustering 

Balancing: We recognized that there was an incredibly high number of the accident severity 
classification of “property damage only” compared to other severities and this imbalance would 
cause the model to only favor this classification. As a result, random under sampling was 
utilized to balance the data to the least frequent classification (Fatal). (2u.Inc, 2021)  

Clustering: To exclude outliers that might be caused by disparate factors, we utilize the Density -
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. This allows us to 
group accidents by their relative geographic location, thus minimizing the effects of external 
causes of variation during classification and assuring that we are observing similar cases. 

The utility of DBSCAN compared to other cluster algorithms like K-Means or Agglomerative 
Clustering is both its ability to discover clusters of any shape (as opposed to gaussian-ball 
shaped) as well as being able to exclude noise which is important in our context. By running the 
DBSCAN algorithm at an epsilon value of 0.15, which was optimized by a k -nearest-neighbor 
search, we were able to create a cluster graph of all clusters as shown in Figure 13. The 
DBSCAN algorithm returned around 23 clusters, however, almost 80% of over 10,000 data 
points plotted are contained in 3 clusters localized in Los Angeles County, San Francisco Bay 
Area, and along central California. As a result, we focus on these high-density regions and 
sample data from each of them. (Appendix 3 & 4). We also ran the DBSCAN algorithm on the 
dataset derived from FARS database to do geo-spatial analysis. 

Trends Over Time: We analyzed the monthly collision severity from SWITRS database from 
2001-2020 and tried to characterize historical and future trends.    

4. Mathematics Methodology 

In this section, we aim to construct a model that can classify accident severities based on 
environmental conditions, driver behavior, and geographic location as well as analyze the most 
influential factors affecting them. 

4.1. Assumptions and Justifications 

1. Minimal variation in the location of hotspots and the severity /frequency its data over period 
2017-2019. This assumption allows us to conduct geospatial analysis using data from more 
than one year. 

2. Geographic accident clusters can be defined as dense regions of accidents that are 
separated by non or less-dense regions of accidents . This assumption is necessary to 
define clusters for the DBSCAN clustering algorithm.  

3. The data collected is correct and applicable to the goals of this paper  
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4. Statistics tool and models are calculated correctly  and provide the correct result.  The “IBM 
SPSS Statistics” (IBM Inc, 2022) software from IBM has been widely used for data analytics 
and multivariate analysis.” Math Works Mapping Toolbox” (MathWorks Inc, 2022) and 
“MathWorks Statistics and Machine Learning Toolbox”  (MathWorks Inc, 2022) are used for 
modeling and clustering. As such, this assumption is made for confidence in the output of all 
involved models 

5. Only police reported crashes will be implemented.  As the data is collected by the State 
Highway Police and affiliates, accidents that are not reported are not considered in this 
paper 

6. Factors impact the collision frequency and severity in all clusters similarly. We did analysis 
to determine factors affecting collision for LA cluster and applied the lessons learned for all 
clusters in California. 

4.2. Model Development 

Literature has historically recommended three types of intelligent classification techniques for 
modeling accident severity prediction (Buket & Kara, 2020). These are Random Forest, 
Decision Tree, and Bayesian models. Utilizing multiple models provides different insights into 
analyzing the trends within the data.  In this paper, we will investigate the strength of all three of 
these models and determine the optimal strategy in which to classify accident severity.   

4.2.1. Decision Trees  

We use a Decision Tree model to determine what combinations of factors create a high risk for 
crashes, which is vital towards the creation of better risk mitigation strategies. Decision Tree is 
a technique that uses specified factors to make a series of conditional statements that results in 
the severity of an accident. A focus of the Decision Tree model is the tree itself, which shows 
the exact decision process that the model takes to make its conclusion. (Sharma, 2020)  

We use the SPSS tool to form a Decision Tree using a CHAID growth method with a maximum 
of 3 levels. A minimum of 150 cases per node has also been specified to help limit overfitting of 
the model. We then run the model on a 60-40 training-testing split of the data. The CHAID 
growth method uses Chi-Squared testing to be the metric which decides what factor each node 
in the tree should be. (Sharma, 2020). It determines the “goodness of the fit” between the actual 
and expected values.  

𝑥2 =  ∑
(𝑂 − 𝐸)2

𝐸

𝑛

𝑖=1

 

Where O is the actual value of a class, E is the expected value of the class, and n is the total 
number of nodes of the split.  
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4.2.2. Random Forest  

We implemented a Random Forest model (Miaomiao & Yindong , 2022)), to not only predict 
future collision severity but also to receive the most relevant factors affecting collisions.  
Random Forest operates by creating an ensemble of decision trees and taking the highest 
frequency of classification. By collecting results from multiple decision trees, random forest 
more often has a higher accuracy of classification due to its ability to inform its ans wer through 
many different paths. It is a common model used by data scientists mainly for its robustness to 
outliers, quick training and testing speed, and usefulness with high dimensional data , similar to 
our selected factors. 

We use the random forest algorithm provided by the SPSS tool, with 300 trees and 60-40 split 
for the training and testing datasets respectively. The model utilizes the Gini index to compare 
the impurities of different factors. The calculation for the Gini impurity index (G) is stated  below 
where p i is the probability of the classification “i” occurring and n c is the total number of 
classifications (or in our case collision severities) which is 5. 

G = ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑛𝑐

𝑖=1

= 1 − ∑ 𝑝𝑖
2

𝑛𝑐

𝑖=1

=  1 − ∑ 𝑝𝑖
2

4

𝑖=1

 

Our model returns the mean decrease in impurity, which is the average of the decrease of Gini 
impurity in all trees. The calculation for the decrease in impurity (I) is as stated below. 

I = Gparent − Pspli𝑡1Gspli𝑡1 − Pspli𝑡2Gspli𝑡2 … − Pspli𝑡𝑛Gspli𝑡𝑛 

The decrease in Gini impurity is found by subtracting the Gini impurity (G) of every split (in n 
splits) multiplied by the proportion of cases in that split (P) from the Gini impurity of the parent 
node (Sharma, 2020) 

4.2.3. Bayesian Models 

We implemented a Bayesian model as well, to classify collision severity outcomes based on 
conditional probability and predict the most relevant factors.  We choose the Naïve Bayes model 
provided in the SPSS tool, as it is among the best suited Bayesian models (Vadapalli, 2021) for 
working with categorical data. It uses Bayesian probability to find variable importance where 
P(A|B) is the probability that A occurs given that B occurred.  The formula for this known as 
Bayes’ Theorem is shown below  

P(A|B)  =  
P(A) P(B|A)

P(B)
 



2021-22 MTFC Project Report                         Page 10   

 

P(A) is the probability that A occurred. P(B) is the probability that B occurred. And P(B|A) is the 
probability that B occurred given that A occurred.  

The advantages of this model are that it returns the probabilities of the factors with respect to 
the dependent variable. (Vadapalli, 2021). Knowing the factor with the strongest probability 
correlation would help determine the most influential  factor impacting collision severity. This 
would also help verify the factor importance results from the Random Forest model.  

However, a significant assumption of the model makes is that all factors are independent. While 
this constraint has prevented Naïve Bayes from making accurate predictions in other 
applications, we hope to implement the unassociated components provided by Exploratory 
Factor Analysis to mitigate this risk.  

5. Risk Characterization and Analysis 

5.1. Collision Severity Characterization 

Before we start analyzing the impact of various climate, behavioral, and geo -location factors on 
collisions, we will characterize collision severity based on its severity, frequency, and   
historical / future trends. 

5.1.1. Collision Severity Distribution 

In 2019, there was a total of 470K accidents across California. However, there is a significant 
variation between the frequencies of severities themselves as evident by  Figure 3. For example, 
in 2019, “property damage only” accounts for approx. 60% of accidents, while complaint of pain  
is 24% and other injury accounts for 12%. Fatal (0.73%) and severe injury (3%) of accidents 
comprise only a total of 3.7% of accidents. While this demonstrates that the likelihood of being 
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involved in a dangerous and harmful collision in California is low, almost 18,000 people 
experienced life-threatening injuries or death as a result.  

5.1.2. Severity,  Frequency and Expected Values  

As shown in Table 3, from 2001-2020 we see total mean collision of 38.6K (+/- 5.2K) per month 
in California, of which” Property Damage Only (PDO)” type collision (23K +/- 3.5K) is twice as 
much as “Pain” collisions (9K +/-1.2K), while "fatal” collision is about 272 (+/- 257) per month. 

Table 3: Mean, STD and Range of Collision severities per month from 2000- 2021 

 PDO Pain Other Severe Fatal Total 

Mean 23,356 9,295 4,762 905 273 38,591 

Standard Dev. 3,483 1,198 804 151 43 5,243 

Range 18,368 7,819 3,900 740 257 29,534 

5.1.3. Collison Trends  

We also see a long-term declining trend in collisions classified “PDO”, “Pain” , and “other injury”. 
This holds true even after discounting the unusual traffic conditions resulting from the COVID 
pandemic. However, “Fatal” and “severe-injury“ collisions show a stable and increasing trend 
respectively. Figure 4 shows the historical trends of average monthly collisions in the years 
2001- 2020 by accident severity. Using the line of best fit for each severity to evaluate the 
trends, we see a decline in the number of collisions per month classified “property damage only” 
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(-0.11%), “pain” (-0.06%), “other injury” (-0.12%), and “fatal” crashes (-0.04%), while severe 
injury gained 0.13% of accidents per month. (See Appendix 9.5) This demonstrates that while 
the number of collisions classified pain or fatal have not changed significantly over time, there 
has been considerable variation in other severities. In particular , the number of “severe injury” 
collisions have been rising in contrast to other classifications and will be expected to do so in 
future years 

By analyzing the historical frequency of the total monthly accidents recorded in California from 
2001 to 2020 as shown in Figure 5, we observe a close relation between accidents and 
economy, expressed as a percentage of the employed population  (USBLS,, 2022) as shown in 
red. This correlation even accounted for the sharp decline in 2020 (the emergence of the 
COVID pandemic) (See appendix 9.5). The Bureau of Labor Statistics projects that employment 
would increase by 10.8% in 2022 alone (USBLS,, 2022).  This, along with the graphs recently 
rising trend, demonstrates that as the employed population rises, the number of collisions in 
California will also increase dramatically.  

5.2. Factor Analysis  

The next goal of our model was to determine the impact of various climate, behavioral, and 
location factors, that contribute to varying degrees of accident severity, based on the 
mathematical model explained in Section 4. 

Figure 5 Historical trends of monthly average Collision by severity type from 2000 - 2021 
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5.2.1. Exploratory Factor Analysis of accident model  

Before running the models, we conducted “Exploratory Factor Analysis” (EFA) in the SPSS tool 
for “dimensional reduction”, wherein we investigate the correlations in the independent factors 
themselves and determine if the variation in the data could be explained by a fewer number of 
hidden variables. (Fabrigar, 2011) These hidden variables should be independent with each 
other. While Random Forest and Decision Tree, do not depend on uncorrelated factors to make 
accurate predictions, Naïve Bayes depends on the assumption of independent data to correctly 
calculate probabilities. When running EFA with Principal Components Analysis (PCA) over our 
clustered dataset, the program returned a Kaiser -Meyer-Olkin (KMO) value of 0.59, 
demonstrating an adequate reliability of the factor analysis results. Also, the result of Bartlett’s 
test of sphericity shows a significance level (below 0.0001). meaning that the data reduction 
technique can compress the data in a meaningful way (Carlson, June 2010). 

First, we removed the factors that have low communality loading (below 0.3). Then, after 
creating a covariance matrix to analyze the correlations between the factors, we computed the 
eigenvalues for our principal components (PC). By using the Kaiser criterion, we selected only 
the PCs with an eigenvalue greater than 1, as shown in the Scree plot  Figure 6 (Costello, 2005) 

 

 

EFA returns five components as shown in Table 4, with a total of 71% variance explained. The 
values in each cell of the component matrix reveal the correlations of each factor with a  PC. For 
example, PC 1, explains the highest variance (18%) and conta ins a high correlation between 
weather and road surface. This is intuitively correct since type and amount of precipitation will 
correlate with the slipperiness of the road. In general, PC1 describes the atmospheric 
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Figure 6: Scree Plot using Principal Component Analysis  
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conditions (18%), PC2 the luminosity during the accident (12%), PC3 driver related information 
(12%), PC4 describes the type of location (11%), and PC5 the vehicle/driver conditions  (11%). 

Table 4: Component matrix using Principal Component Analysis  

 Component 

 1 2 3 4 5 
Weather 0.908     

Road surface 0.905     

lighting  0.785    

Collision time  -0.664    

Gender   0.759   

Location type    0.744  

Population    0.684  

Party age   0.468  0.653 

Vehicle year   -0.518  0.611 

 

5.2.2. Analysis of factors from Decision Tree 

After running our  models,  we analyze the output from the Decision Tree model, which is the 
tree itself as shown in Figure 7. The first split in the Decision Tree is often considered the most 
influential factor. In this instance, the most influential factor is driving under the influence of 
alcohol (Chi-squared 1,127), which shows a strong separation between low severities (PDO or 
Pain) and high severities (Severe or Fatal).  Another key take-away from the tree is the path 
where the driver is drunk and under the influence of drugs  (Chi-Squared 150 to 300), resulting 
in a 95.5% chance of accident. This means that the impairment value is also a significant factor 
in characterizing severity. 

We also observed a significant split due to vehicle makes (Chi -Squared of 725). While car 
makes such as Toyota, Honda, Chevrolet, etc. have shown to be often involved in safer 
collisions, motorcycles such as Suzuki, Yamaha, or Harley -Davidson have a much higher injury 
and fatality rate. In fact, there is almost three times the risk of severe collisions for motorcycles 
than cars and the risk of a fatal crash is doubled.  

Additionally, the population classification (Chi-Squared 45) proves to be an efficient divider 
between mild and serious collisions. Among collisions involving non-DUI and cars, severe 
collisions are more than twice as likely to be found in an unincorporate d area rather than in 
areas with a population of or greater than 10,000.  
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Legend 
 

  1 Property Damage Only 

  2 Complaint of Pain 

  4 Severe Injury 

  5 Fatal 

Figure 7: Decision Tree Output 
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5.2.3. Analysis of factors from Bayesian and Forest Model  

In addition to the Decision Tree, we obtained factor importance results from the Bayesian and 
Forest models as well. We ran both a probability analysis and a Gini index method to determine 
the primary factors that contribute to collision, as shown in the Figure 8 and Figure 9. Both 
methods agree that collision time has the highest rank, followed by party age, vehic le year, and 
population. Since vehicle year correlates with party age based on our EFA, we did not 
characterize vehicle year separately. We conducted a frequency analysis of the other three 
variables, to determine how they impact the severity of accidents. Variable Importance from 
Forest Model 

5.2.3.1. Collision Time 

A frequency analysis of the collision time factor is constructed as the frequency of collisions per 
hour in a day as a percentage of the total accidents, for every collision severity as shown in 
Figure 10.(see Appendix 9.7 for detail). There appears to be two peaks in overall collision 
frequency: the hours of 7 – 8 AM and 2 – 6 PM. This correlates well with traffic congestion 
(TomTom Inc, 2022) data as shown in the Figure 10. We also see significant number of severe 
Injury and Fatal crashes from 6 PM to midnight. This suggests that the lighting may have a 
correlation with severe car crashes which is consistent with EFA PC2 that found a significa nt 
correlation between lighting and time of the accident.   

Variable Importance - Naïve Bayes Model  

Subset Predictor Added Rank 
Pseudo-

BIC 

Average 
Log-

Likelihood 

1 collision_time 8 1.082 -1.081 

2 population 7 1.068 -1.067 

3 alcohol_involved 6 1.055 -1.054 

4 party_age 5 1.044 -1.043 

5 vehicle_year 4 1.035 -1.033 

6 party_sex 2 1.031 -1.028 

7 road_surface 1 1.031 -1.028 

8 road_condition 3 1.032 -1.028 

 Figure 9: Variable importance from Naive Bayes model  

Figure 8: Variable Importance from Forest Model 

Variable Importance - Random Forest Model  

 Decrease in Node 
Impurity 

collision_time 1092.554 

party_age 821.540 

vehicle_year 754.227 

population 390.401 

party_drug_physical 285.354 

alcohol_involved 231.707 

lighting 198.049 

weather_1 155.437 

location_type 135.126 

party_sex 91.165 

road_condition 90.612 

road_surface 71.769 

Total decrease in node impurit ies from splitt ing on the variable 
averaged over all trees measured by the Gini index  
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5.2.3.2. Age 

At-risk age groups for various collision severities could  be evident through a frequency analysis 
of the age of drivers involved in a collision (see Appendix 9.6 for detail). To get a more accurate 
impact of age on the collision severity, we should normalize the collision distribution against the 
demographic size of registered drivers. Due to unavailability of this data, we use the 
demographic size of general population in 2019 obtained from “US Census Bureau” (US Census 
Bureau, 2022) (Sub Urban Stats, 2020). As is evident from Figure 11, we see that the biggest 

Figure 11 Number of accidents as a percentage of demographic in 2019 California  
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at-risk group is teens (15 – 21 years). The decrease in collision percentage in ages 15-17 may 
be because not all people in the age group drive. As driving becomes more common as people 
age (21-24 years), 2.5% - 3% of the demographic were involved in collision. As people mature, 
they drive more responsibly as is evident drop in collision percentage to 1.5% by age 40, and 
further decline from 1.5% - 1.2% for people in age group 40 -64 years. We see a continues drop 
of collision by senior drivers (0.5%). We see similar trends in all collisions, irrespective of the 
collision severity.  

5.2.3.3. Population 

The third most important factor from our models is the population size. We created histogram of 
the frequencies of collision severities (as a percent of total collisions in 2019) over population 
size classification as shown in Figure 12. (See Appendix 9.8 for detail). We see that 25% of 
accidents occur in unincorporated areas for almost every severity classification (excluding 
pain). This might be because these areas may lack basic services such as active police force, 
proper infrastructure, etc. We also see a rising trend in the number of collisions as the 
population size grows. This holds true for all severities, demonstrating that large, densely 
populated areas are most at risk for a serious accident.   

5.2.4. Model Design and Accuracy  

A common way to evaluate a multi-classification model such as ours is the confusion matrix. It’s 
a matrix in which the number of correct and incorrect predictions are summarized with count 
values and broken down by collision severities. The metric we derive from the matrix is the 
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accuracy (number of all correct predictions/ total dataset) , precision, and recall. Precision is the 
number of predicted cases of a severity that were actually correct. Recall is defined to be the 
number of true cases of a severity that were predicted correctly  (Shung, 2018)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 
=

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=  

𝑀𝑖𝑖

∑ 𝑀𝑖𝑗𝑗

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 
=

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=  

𝑀𝑖𝑖

∑ 𝑀𝑗𝑖𝑗

 

where M is the confusion matrix ; i and j are the index of row and columns.  A metric to 
understand both the precision and recall is the F1 Score  (Baeldung, 2020 ), which is the 
harmonic mean of the two as shown below.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

F1 Score and all other metrics for the models are listed in Table 5. The other injury 
classification performed poorly (0.3% accuracy) and interfered with the accuracies of other 
severities, hence we removed other injury for the classification purpose.  

Table 5: Accuracy, Precision, Recall and F1 Score for the models 

Model Name Accuracy Collision Severity Precision Recall F1 Score 

Decision Tree 42.70% 

Property Damage Only 60.70% 39.50% 47.90% 

Pain 32.50% 34.40% 33.42% 

Severe Injury 48.00% 48.20% 48.10% 

Fatal 20.30% 83.80% 32.70% 

Random Forest 44.30% 

Property Damage Only 40.70% 40.40% 40.40% 

Pain 40.60% 38.80% 39.70% 

Severe Injury 44.40% 45.30% 44.80% 

Fatal 33.60% 55.50% 42.00% 

Naïve Bayes 55.70% 

Property Damage Only 60.20% 52.20% 55.90% 

Pain 55.50% 52.20% 53.80% 

Severe Injury 53.30% 59.80% 56.40% 

Fatal 51.10% 66.50% 57.80% 

5.3. Risk Analysis 

5.3.1. Regional Risk Analysis  

We then conduct geolocation analysis, using MATLAB’s DBSCAN algorithm, on the data derived 
from FARS database to determine areas of highest accident density clusters called “accident 
hotspots”. We use FARS dataset because it is better at providing data from highways and 



2021-22 MTFC Project Report                         Page 20   

 

intersections, even though it only covers fatal accidents. We found that collisions in California 
are concentrated largely around three ”accident hotspots” located in Southern LA, Central 
California, and the Bay Area (Figure 13). 

The Los Angeles cluster is the largest and most dense region of accidents in California. To find 
specific dense areas within the LA Cluster, we created a heat map where denser areas are 
more brightly colored. This heat map shown in Figure 14 describes the region by aggregating 

Figure 13: Three Most significant accident Clusters in California 

Los Angeles Cluster 

Bay Area Cluster 

Fresno Cluster 

Figure 14: Heatmap for LA Area 
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the collisions per square mile. As apparent by the figure, the density of collisions in LA is un -
evenly distributed and largely focused on Southern LA, (defined as the region east of Inglewood 
and west of Highway 110), followed by Downtown LA, Beverly Hills, Torrance, Garden Grove, 
Pomona, San Bernadino, Long Beach, and Downtown San Diego. The Bay Area cluster mainly 
surrounds the coast of the San Francisco Bay and in the San Francisco city center. Here, 
collisions are centered around Downtown Sacramento, Stockton, Modesto, San Jose, and San 
Francisco. In central California, accidents are largely clustered around Downtown Fr esno and 
Visalia.  

5.3.2. Direct Risk to Automotive Insurance industry  

From both our analysis of the influential factors controlling accident severity and our geo -spatial 
analysis, several risk groups were identified. While the primary risk group in a collision are the 
drivers and passengers involved, a large part of the risk of those insured is passed on to their 
insurance companies. Hence, it follows that a higher severity collision indicates a higher risk for 
both the drivers and insurance companies. As a resul t, we have determined that the insurance 
companies largely at risk are those that insure drivers exposed to the conditions and locations 
described in this past section.  

In 2010 alone, insurance corporations lost 42 billion to covering medical expenses due  to 
injuries caused by an accident. This means that the severity of the accident plays a significant 
role in the loss of the insurance provider. As calculated by  Blincoe et all (Lawrence, Miller, 
Zaloshnja, & Lawrence, 2015) the average medical bill for a non-fatal accident after adjusting 
for inflation is as follows: for property damage has a unit cost of $3,148.30, a compl aint of pain 
costs $5,379.42, other injury costs $6,099.45, a severe injury costs around $25,946.87. 
Automotive insurance (the primary insurance provider) may have to pay more if they are 
covering the at-fault driver. 

Several private auto insurance brokers are active in California: State Farm, Farmers Insurance, 
Geico, Berkshire Hathaway, Allstate, Auto Club Exchange, Mercury Insurance, Kemper, and 
Progressive which accounts for 82.35% of the auto insurance market  (EverQuote, 2019). As a 
result, we predict that these companies will take the largest hit as collisions rise during th e 
employment rebound after COVID-19. 

5.3.3. Ancillary Risk and at-risk Subgroups 

The primary risk group are the drivers and passengers who were directly involved in the 
accident. The drivers most at risk to an accident or a fatal crash are in the “Accident hotspo ts” 
explained above and are exposed to the influential factors highlighted in section 5.2. For a 
driver involved in a collision there are multiple risk such as loss of life, the medical costs 
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associated with injury, the loss to the quality of life and the property damage done to the driver 
or others involved. 

When a victim is injured but survives, not only is there a medical and property cost, but also a 
loss of the quality of life. Depending on the degree to which the victim is affected, they can 
suffer pain and distress. In 2019, Americans spend over one million days in the hospital each 
year from crash injuries  (NCIPC, CDC, 2017). More than 2.5 million Americans went to the 
emergency department (ED) and nearly 200,000 were then hospitalized for crash injuries in 
2012 (NCIPC, CDC, 2017). Lifetime work lost because of 2012 crash injuries cost an estimated 
$33 billion .  (NCIPC, CDC, 2017). Bryant et. Al (Bryant, 2021) states that settlement claims for 
pain and suffering can range anywhere from a few thousand dollars to an upwards of $250,000 
or $500,000 dollars depending on the severity of the accident and its resulting impact s on the 
driver’s emotional health. 

There is also the risk of damage to the driver’s car or other property, which has shown to be the 
most common instance of collision. While the collision liability insurance (required in California) 
of the at-fault driver often pays to repair or replace the victim’s car, there is no coverage for an 
at-fault driver that is uninsured or underinsured to pay the victims damages. From our model, 
we see that in 2019 about 14% of Californians involved in an accident lacked insura nce (CHP, 
California, 2022). Hence these group not only have the risk of economic ruin , if involved in 
crash, but also legal action since it’s illegal to drive without basic insurance in CA. In these 
cases, having Underinsured/Uninsured Motorist Property Damage Insurance is a way for drivers 
to be sure that their property will always be covered in a collision . 

Even if a driver is insured, they still might be subject to paying a deductible and/or pay out -of-
pocket if the policy l imit has been reached. Both cases are more likely/serious in a severe 
accident resulting in a greater risk for these drivers. As a result, having a plan with a lower 
deductible or a higher limit would reduce the risk. Additionally, drivers who can afford t o buy 
additional insurance buy medical payment insurance, which covers the medical bill and usually 
does not have any deductibles. Having this form of insurance would significantly reduce the risk 
for the drivers themselves.  

While the danger towards drivers and others on the roads is large focus of our model, the 
subsequent risk towards productivity is known to exceed $20 billion in California (Lawrence, 
Miller, Zaloshnja, & Lawrence, 2015). Not only the productivity of the driver/occupants is at risk, 
but also those affected by the subsequent congestion created by the crash , in terms of lost work 
time. Additionally, out of the many regions created by our clustering model, the Los Angeles 
Region held the highest frequency of all severities and was the densest. Since the Los Angeles 
also contains many traffic intensive highways and the highest level of traffic in the country 
(Mobility Division,, 2021), we consider it to be an especially high-risk cluster. 
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5.4. Strengths and Weakness 

Our model provided practical results on the most influential factors that impact traffic severity . 
This information is useful in characterizing the risk that should be addressed through both 
insurance and public policy. One of the largest strengths of our model relates to our multiple -
model approach. For example, this allows us to corroborate our Random Forest factor 
importance results with that from our Naïve Bayes model, confirming that there is no bias in  the 
metric or model. Additionally, a multiple-model approach allows us to gain different insights into 
the data. For example, running the Decision Tree gives an understanding of the exact decision 
process whereas Random Forest does not.  

Additionally, by implementing DBSCAN and geo-analysis using our latitude-longitude datasets, 
we were able to find general and specific areas of collisions that should be addressed by state 
and local officials. However, a disadvantage of DBSCAN is that it cannot create clusters with 
varying densities which is more often the case with traffic accident location.  

Also, as demonstrated by the poor accuracy and other metric scores of our model, we did not 
have enough factors to fully describe the causes of collision severity.  If provided with more 
relevant factors, we would be able to improve the performance of our model. Examples of such 
factors are the accident-avoidance technology of the car,  autonomous driving level 
classification, more granular car model classification, safety equipment, distance from hospital, 
and the vehicle’s crash test score, registered vehicle driver demographics to name a few. 
Moreover, we assumed that the factors impact collision frequency and severity in all clusters 
similarly. We did analysis to determine factors affecting collision for LA cluster and applied the 
lessons learned for all clusters in California.  It would be better to apply the model for Bay Area 
and Fresno clusters individually and determine any special factors affecting them.  

6. Recommendation 

6.1. Insurance Recommendation 

Established in 1983, California legislature enacted the Compulsory Financial Responsibility Law 
requiring all vehicles on Californian roadways to have a form of liability insurance . Based on the 
future trend in Fig 5, we predict that as the number of accidents will increase in the aftermath of 
the COVID pandemic, the premiums of auto insurance companies will also likely increase.  This 
will disadvantage low-income individuals who would be unable to pay these premiums and be 
unable to drive legally as a result and put themselves in danger of losing their financial stability . 
In response, we recommend not only to enforce a stricter regulation of the insurance mandate, 
but also increased funding of “California’s Low-Cost Automobile Program” (CLCA). (Insurance, 
2022) CLCA is a California insurance program introduced in 1999 as a method to provide 
financially disadvantaged people and families with affordable insurance rates  and drive legally.  
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The CAARP program (Insurance, 2022) caters towards high-risk individuals who have been 
involved in multiple accidents/tickets and are not able to find a standard insurance company 
that will insure them. All insurance companies in California are required to accept CAARP and 
we recommend that legislature funds and improve this program.  

Google aims to prevent 100 million (Bradshaw, 2021) accidents each year, with a new “safe 
route” option in Google Maps. It uses similar factors used in our model, to suggest a “safer” 
alternative route. We recommend insurance companies to encourage drivers to proactively 
adopt similar accident-avoidance technologies. 

6.2. Policy Recommendation 

Addressing the root causes of vehicle collision in California, requires an in-depth analysis of 
government policies. As our model determines, time of collision, one of the most impactful 
factors affecting the intensity of collisions, correlates strongly with traffic congestion as shown 
in Figure 10, especially in California hotspots (section 5.3.1). As California is expected to 
receive $45.5 billion from the $1.2 trillion infrastructure bill recently introduced by President 
Biden, (Walters, 2021) we recommend that we use part of the $9.45 million that’s allocated for 
public transport to fund Los Angeles Department of Transportations’ (DOT) NextGen Bus Plan.  
We suggest focusing on Southern Los Angeles around the Inglewood and Hawthorne area to 
simultaneously tackle both congestion and driver safety. Similarly, in the Bay Area, we 
recommend using the funding to enable Caltrain’s commuter rail service (Caltrain, 2022) to 
complete electrification and to extend Bay Area Rapid Transport (BART) further into the Silicon 
Valley (BART, 2022). 

We also see that unincorporated areas faced the highest risk of collision in almost every 
severity (Section 5.2.3.3). We hypothesized that this might be due to a lack of police activity or 
traffic regulation in these areas, leading to more reckless driving behavior and more dangerous 
collisions (McCarthy, 1999). Hence, we recommend to use the infrastructure funding to improve 
rural infrastructure such as more active traffic police involvement, DUI enforcement, traffic 
lights, improved lighting, and setup of traffic cameras for improved vehicle regulation.  

Additionally, our frequency analysis found that drivers from the age of 17-22 were most at risk 
(Figure 11) of not only being involved in a crash but also being involved in a serious ac cident. 
As a result, State of California has “Graduated driver licensing (GDL)” through a learner’s 
permit which requires a graduated granting of driving privileges for a learning driver.  
Specifically, we recommend the passing of Assembly Bill AB-2388 (Villapudua, 2022) which will 
require graduated licensing from age 18 currently to the age 21. This bill, if passed, will help 
many young, learning drivers gain driving experience safely . 
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From our Decision Tree, we found that the influence of alcohol on a driver is more likely to 
increase the severity of a collision as shown in section 5.2.2. In fact, 95.5% of cases involving a 
combination of drunk driving and the use of drugs resulted in a fatal accident.  California’s Office 
of Traffic Safety (OTS) has created the California Impaired Driving Plan (CIDP) (OTS, 2020) 
that implements DUI / DUID treatment programs and advocate for stricter penalties as 
perceived risk of arrest has proven to be the strongest deterrent to impaired driving. We 
recommend continuing and strengthening these programs through additional funding. We also 
advocate the use of Ignition Interlock devices (IIDs) for all convicted drunk driving offense.  
(NCIPC, CDC, 2016) This device keeps the vehicle from starting unless the driver has a BAC 
below a pre-set limit. The International Council on Alcohol, Drugs  and Traffic Safety maintains 
that IIDs, when combined with proper monitoring program, leads to a 40–95% reduction in the 
rate of repeat drunk driving offenses (DMV - CA, 2022).We also would recommend to fund and 
strengthen publicized sobriety checkpoints where police can check for DUI. Lastly, we 
encourage to continue enforcement of minimum drinking age  (NCIPC, CDC, 2017). 

The frequency analysis of the time-of-day factor (section 5.2.3.1) demonstrated collision peaks 
at morning (7-8 AM) and evening (3-7 PM) which correlates with work commute traffic as 
corroborated by the congestion report  (TomTom Inc, 2022).  As evident in Figure 4, collision 
accident frequency follows economy trends closely. As a result, we believe that work commute 
is one of the major causes of these traffic peaks. The state of California already encourages 
employees to use other forms of work commute through its Bicycle Commuter and “Mass Transit 
and Vanpool” programs. (CAL-HR, 2022). We recommend that such programs be encouraged 
for a broader workforce as well.  

6.3. Concluding remarks 

In total, our model and analysis demonstrated that several factors, especially the time of 
collision, the age of the driver, and the population of the area contributed to the severity of 
vehicle accidents. Not only the drivers and victims are at risk, but also the insurance 
companies, other commuters, employers, and the economy are affected, especially people 
living in hotspots such as LA, Bay Area, Fresno, and Visalia. We recommend the improvement 
of public transportation within these areas by implementing Los Angeles’s NextGen Bus Plan, 
and improving Caltrain and BART, as well as improving infrastructure and increased traffic 
enforcement in unincorporated areas. We recommend the passing of Assembly Bill AB-2388 
that will require the graduated licensing up to the age of 21. To reduce the risk due to impaired 
driving, we suggest the California State expands CIDP treatment programs, advocate the use of 
IIDs for all convicted drunk driving offense, fund and strengthen publicized sobriety 
checkpoints, and continue enforcement of minimum legal drinking age. We suggest that the 
state encourage work commute programs to a broader workforce. We also recommend the 
funding and continuation of the CAACP and the CAARP programs to increase insurance 
affordability to underrepresented or impoverished individuals.    
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9. Appendix 

9.1. Appendix 1: Data Factors 

This section describes the relevant factors of the environmental conditions of the accident, the 
driver behavior and crash location used in our model.  

Factor Description Data Type Value Definition 

Age 
Age of the driver at the time of 
collision 

Ratio   The age of the driver in years 

Alcohol involved 
Indicates collision involved a party 
that had been drinking 

Comparative 
0 Alcohol not involved 

1 Alcohol involved 

Cellphone in use 
Classification based on if the party 
is using cell phone 

Comparative 

0 No 

1 Yes 

Collision Time 
The time when the collision 
occurred (24 hr. time) 

Ratio   
Time when the accident 
occurred in military time 

Drunk Driving 
Classification based on whether 
the primary party is intoxicated 

Comparative 
1 Not due to drunk driving  

2 Due to drunk driving  

Financial 
responsibility 

Classification based on whether 
the party showed proof of 
insurance at the time of collision 

Comparative 

0 
no proof of insurance 
obtained 

1 proof of insurance obtained 

Intersection 
Classification based if collision 
occurred in an intersection  

Comparative 

0 Not an intersection  

1 It is an intersection 

Intersection Type 
Classification based on 
 intersection type 

Comparative 

1 Not an intersection  

2 Four way intersection  

3 T intersection  

Latitude 
Y- coordinate of the geocoded 
location of the collision 

Comparative degree   

Longitude 
X- coordinate of the geocoded 
location of the collision 

Comparative degree   

Lighting Condition 
Classification based on how bright 
location is at the time of collision 

Comparative 

1 Dusk 

2 DARK-Not Lighted 

3 Dark-Unknown  

4 DARK-Lighted 

5 Dawn 

6 Day-Light 
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Factor Description Data Type Value Definition 

Party drug 
Impairment 

Classification based on physical or 
drug induced impairment 

Comparative 

1 not applicable or 'G' 

2 under drug influence 

3 sleepy/fatigued 

4 impairment - physical 

Party gender 
Primary party's gender 
Classification 

Nominal 
1 Male 

2 Female 

Population 
Population size classification at the 
collision zip code 

Comparative 

1 unincorporated 

2 <2500 

3 2500 to 10000 

4 10000 to 25000 

5 25000 to 50000 

6 50000 to 100000 

7 100000 to 250000 

8 >250000 

Road Condition 
Classification based on road 
condition  

Nominal 

1 Normal 

2 Construction’ 

3 Flooded 

4 Holes 

5 Loose Material’ 

6 Obstruction’ 

7 Reduced width’ 

8 Other 

Road Surface 
Classification based on slipperiness 
of the road at the time of the 
collision 

Comparative 

1 Dry 

2 Wet 

3 Snowy or Icy 

4 Slippery (Muddy, Oily, etc,) 

Vehicle make 
Classification based on the vehicle 
make of the primary party's vehicle 

Nominal   
Make of the primary party's 
vehicle 

Vehicle year Model year of the party's vehicle Interval   
Model year of the primary 
vehicle model 

Weather 
Classification based weather 
condition at the time of collision  

Comparative 

1 Severe Crosswinds 

2 Snow 

3 Rain 

4 Cloudy  

5 Clear 
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9.2. Appendix 2: Create Table.sql  

Data derived from SWITRS database for the year 2000 - 2021.    

CREATE TABLE collisiontable1M(case_id PRIMARY KEY, collision_severity TEXT, latitude REAL, 
longitude REAL, population TEXT, lighting TEXT, collision_time TEXT, intersection INT, 
location_type TEXT, road_surface TEXT, road_condition_1 TEXT, weather_1 TEXT, 
alcohol_involved INT, at_fault INT, financial_responsibility TEXT, party_age INT, party_sex 
TEXT, party_drug_physical TEXT, cellphone_in_use TEXT, vehicle_make TEXT, vehicle_year 
INTEGER); 

         

INSERT INTO collisiontable1M select  

     collisions.case_id, collisions.collision_severity, 

  collisions.latitude, collisions.longitude, 

  collisions.population, collisions.lighting, 

  collisions.collision_time, collisions.intersection, 

  collisions.location_type, collisions.road_surface, 

  collisions.road_condition_1, collisions.weather_1, 

  collisions.alcohol_involved, parties.at_fault, 

  parties.financial_responsibility, 

  parties.party_age, 

  parties.party_sex, 

  parties.party_drug_physical, 

  parties.cellphone_in_use, 

  parties.vehicle_make, 

  parties.vehicle_year 

from collisions 

inner join parties on collisions.case_id = parties.case_id 

where parties.at_fault = 1 AND 

   collisions.latitude IS NOT NULL AND 

   collisions.longitude IS NOT NULL AND 

   collisions.population IS NOT NULL AND 

   collisions.lighting IS NOT NULL AND 

   collisions.collision_time IS NOT NULL AND 

   collisions.intersection IS NOT NULL AND 

   collisions.location_type IS NOT NULL AND 

   collisions.road_surface IS NOT NULL AND 

   collisions.road_condition_1 IS NOT NULL AND 

   collisions.weather_1 IS NOT NULL AND 

   parties.financial_responsibility IS NOT NULL AND 

   parties.party_age IS NOT NULL AND 

   parties.party_sex IS NOT NULL AND 

   parties.party_drug_physical IS NOT NULL AND 

   p.cellphone_in_use IS NOT NULL AND 

   parties.vehicle_make IS NOT NULL AND 

   parties.vehicle_year IS NOT NULL 
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9.3. Appendix 3: POCDataClusters.m 
  

%========================================================================== 

% File      : POCDataClusters.m 

% Project   : Modelling the future Challange 

% Detail    : This is the main code. 

%             Analying the eefct of light conditions, factor 2 on the  

%             number of accidents in the Saceremento and LA Clusters 

%========================================================================== 

 

% Constant declaration ---------------------------------------------------- 

baseProjectDataDir = "Y:\59_MTFC Math Competition\0_Project Data\"; 

accDatafileName = baseProjectDataDir + "ashba_LocationDataWithFactorsZipCode_Active"; 

LightconditionFreqDataFilename = baseProjectDataDir + 
"Factor_LightCondition_FreqData.xlsx"; 

WeatherFreqDataFilename = baseProjectDataDir + "Factor_Weather_FreqData.xlsx"; 

DrunkDrivingDataFilename = baseProjectDataDir + "Factor_DrunkDriving_FreqData.xlsx"; 

IntersectionDataFilename = baseProjectDataDir + "Factor_Intersection_FreqData.xlsx"; 

SeasonDataFilename = baseProjectDataDir + "Factor_Season_FreqData.xlsx"; 

 

% Cleanup ----------------------------------------------------------------- 

Utility.DeleteFile(LightconditionFreqDataFilename); 

Utility.DeleteFile(WeatherFreqDataFilename); 

Utility.DeleteFile(DrunkDrivingDataFilename); 

Utility.DeleteFile(IntersectionDataFilename); 

Utility.DeleteFile(SeasonDataFilename); 

%Utility.DeleteFile(RandomForestInputTableFilename); 

 

% Read the accident data from file to a matrix----------------------------- 

data = readcell(accDatafileName); 

header = data(1,:); 

data(1,:) = []; 

 

% Instantiate the cluster algorithm --------------------------------------- 

 dbScanCluster = DBScanCluster(data, 2, 3); 

 ClusterIndexList = dbScanCluster.Execute(5); 

 dbScanCluster.Plot(); 

 

% Get the Data for biggest cluster ----------------------------------------  

 %biggestClusterIndex = dbScanCluster.GetBiggestClusterIndex(); 

 biggestClusterData = dbScanCluster.GetCluster(3); 

 %indexList = biggestClusterIndex * ones(size(biggestClusterData, 1),1); 

 %dbScanCluster.PlotClusterData(biggestClusterData, indexList); 
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9.4. Appendix 4: DBScanCluster.m  

%========================================================================== 

% File      : DBScanCluster.m 

% Project   : Math Challange 

% Detail    : Create cluster based on the given data using density based  

%             clustering algorithm 

%========================================================================== 

classdef DBScanCluster < handle 

    % Predictive model using density based clustering algorithm 

     

    properties        

        Data;                  % accident data 

        LatLngData;            % accident data         

        ClusterIndexList;      % Cluster Index List         

        ClusterSizeList;       % Cluster Size List         

        OptimalEpsilon = 0.15; % optimal Epsilon       

    end 

 

    methods 

        function obj = DBScanCluster(data, minPoints, maxPoints) 

             obj.Data = data; 

             obj.LatLngData = cell2mat(data(:,1:2)); 

              

             %Calculate Optimal epsilon for the given data 

             obj.OptimalEpsilon = clusterDBSCAN.estimateEpsilon(obj.LatLngData, 
minPoints, maxPoints); 

        end               

        

        function ClusterIndexList = Execute(obj, minNumOfPoints) 

             % Performing density base clustering 

             % input data - data, min number of Points 

 

             ClusterIndexList = dbscan(obj.LatLngData,  

                                       obj.OptimalEpsilon, minNumOfPoints); 

 

             obj.ClusterIndexList = ClusterIndexList; 

             obj.ClusterSizeList = UpdateClusterSize(obj, obj.ClusterIndexList); 

        end 
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        function clusterSizeList = UpdateClusterSize(obj, clusterIndexList) 

            % Calulate size of each cluster 

            % input - array of cluster numbers 

            % output - array of size of each cluster 

            clusterSizeList = zeros(max(clusterIndexList),1); 

            for i = 1:size(obj.LatLngData) 

                 clusternumber = clusterIndexList(i); 

                if(clusternumber ~= -1) 

                   clusterSizeList(clusternumber) = clusterSizeList(clusternumber) + 1;  

                end 

            end       

        end       

 

        function Plot(obj) 

            % Create a Scatter Plot 

            geoscatter(obj.LatLngData(:,1),  

                        obj.LatLngData(:,2), 5,  

                        obj.ClusterIndexList, "filled"); 

 

            geodensityplot(obj.LatLngData(:,1),    

                           obj.LatLngData(:,2),[],"FaceColor","interp"); 

 

            geobasemap streets 

            hold on 

            %gscatter(obj.LatLngData(:,2), obj.LatLngData(:,1), obj.ClusterIndexList)             

        end        

 

        function biggestClusterIndex = GetBiggestClusterIndex(obj) 

            % return the index of the biggest Cluster 

             

            % Get the index of the BiggestcCluster 

            biggestClusterIndexList =  

             find(obj.ClusterSizeList == max(obj.ClusterSizeList)); 

             

            biggestClusterIndex = biggestClusterIndexList(1,1);  

        end 

 

        function clusterData = GetCluster(obj, index) 

            % return the Data for a particular cluster index  

            clusterData = cell(obj.ClusterSizeList(index), 13); 

            j = 1; 

            for i = 1:size(obj.ClusterIndexList) 

                if obj.ClusterIndexList(i) == index 

                   clusterData(j,:) = obj.Data(i,:); 

                   j = j +1; 

                end 

            end 

        end 
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function PlotClusterData(~, data, indexList) 

            % Create a Scatter Plot      

            latlngData = cell2mat(data(2:end,3:4)); 

            gscatter(latlngData(:,1), latlngData(:,2), indexList(2:end,:))             

        end   

    end 

end 
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9.5. Appendix 5: Data - Collision Severity  

Monthly data derived from the SWITRS database. The percentage population is derived from 
“Labor static of California” from US bureau of California. Employment population ratio is defined 
as percentage of total population employed.  

 
 
 
 
 
 
 
 
 
 

SELECT collisionYearMonth, Count(collisionYearMonth) AS Frequency 

FROM collisions 

where collision_severity = 'property damage only' 

GROUP BY collisionYearMonth order By collisionYearMonth ASC 

 

SELECT collisionYearMonth, Count(collisionYearMonth) AS Frequency 

FROM collisions 

where collision_severity = 'pain' 

GROUP BY collisionYearMonth order By collisionYearMonth ASC 

 

SELECT collisionYearMonth, Count(collisionYearMonth) AS Frequency 

FROM collisions 

where collision_severity = 'other injury' 

GROUP BY collisionYearMonth order By collisionYearMonth ASC 

 

SELECT collisionYearMonth, Count(collisionYearMonth) AS Frequency 

FROM collisions 

where collision_severity = 'severe injury' 

GROUP BY collisionYearMonth order By collisionYearMonth ASC 

 

SELECT collisionYearMonth, Count(collisionYearMonth) AS Frequency 

FROM collisions 

where collision_severity = 'fatal' 

GROUP BY collisionYearMonth order By collisionYearMonth ASC 
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YEAR PDO PAIN 
OTHER 

INJURY 

SEVERE 

INJURY 
FATAL ALL 

CA 

EMPLOYMENT-

POPULATION 

RATIO 

2001 26,464 10,062 5,838 890 293 43,547 63 

2002 27,989 10,042 5,830 895 293 43,593 63 

2003 27,588 10,360 5,761 894 311 44,913 61 

2004 27,601 10,431 5,582 936 308 44,858 61 

2005 27,516 10,206 5,439 913 319 44,394 62 

2006 26,090 9,396 4,914 870 301 41,571 62 

2007 26,113 9,666 4,830 920 296 41,826 62 

2008 23,249 8,847 4,515 847 259 37,716 61 

2009 21,658 8,606 4,242 779 234 35,519 58 

2010 21,073 8,573 4,107 745 210 34,708 56 

2011 20,157 8,448 4,048 764 219 33,636 56 

2012 19,454 8,397 4,128 783 230 32,992 56 

2013 18,673 8,305 4,006 764 238 31,987 57 

2014 19,495 8,596 4,171 794 240 33,297 58 

2015 21,352 9,533 4,499 867 264 36,514 58 

2016 24,391 10,603 4,724 954 297 40,968 59 

2017 24,107 10,237 4,874 1,019 299 40,536 59 

2018 23,904 9,734 5,106 1,158 290 40,191 60 

2019 23,316 9,479 4,945 1,170 286 39,196 60 

2020 18,323 6,808 4,024 1,095 285 30,535 54 
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9.6. Appendix 6: Data – Collision Vs Age 

Age data derived from the SWITRS database. The demographic data is derived from “US 
Census bureau” for the year 2019- 2020. The gross number of accidents may not reflect the 

SELECT parties.party_age, Count(parties.party_age) AS Frequency 

FROM collisions 

INNER JOIN parties on parties.case_id == collisions.case_id 

where (strftime('%Y', collisions.collision_date) == '2019') AND 

      (collisions.collision_severity == 'property damage only') 

GROUP BY parties.party_age 

order By parties.party_age ASC; 

 

SELECT parties.party_age, Count(parties.party_age) AS Frequency 

FROM collisions 

INNER JOIN parties on parties.case_id == collisions.case_id 

where (strftime('%Y', collisions.collision_date) == '2019') AND 

      (collisions.collision_severity == 'pain') 

GROUP BY parties.party_age 

order By parties.party_age ASC; 

 

SELECT parties.party_age, Count(parties.party_age) AS Frequency 

FROM collisions 

INNER JOIN parties on parties.case_id == collisions.case_id 

where (strftime('%Y', collisions.collision_date) == '2019') AND 

      (collisions.collision_severity == 'other injury') 

GROUP BY parties.party_age 

order By parties.party_age ASC; 

 

SELECT parties.party_age, Count(parties.party_age) AS Frequency 

FROM collisions 

INNER JOIN parties on parties.case_id == collisions.case_id 

where (strftime('%Y', collisions.collision_date) == '2019') AND 

      (collisions.collision_severity == 'severe injury') 

GROUP BY parties.party_age 

order By parties.party_age ASC; 

 

SELECT parties.party_age, Count(parties.party_age) AS Frequency 

FROM collisions 

INNER JOIN parties on parties.case_id == collisions.case_id 

where (strftime('%Y', collisions.collision_date) == '2019') AND 

      (collisions.collision_severity == 'fatal') 

GROUP BY parties.party_age 

order By parties.party_age ASC; 
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impact of age on collision, as the size of this demographic vary. Hence, we normalize the 
accident as a percentage of the demographic size for the respective age    groups in 2019  

 

AGE GROUP 
2019 

POPULATION 

TOTAL 

ACCIDENTS 

IN 2019 
PDO PAIN OTHER SEVERE FATAL 

Up to 14 years 7,612,696 2,038 385 556 843 216 38 

15-17 years 1,651,013 10,155 5,347 2,554 1,791 383 80 

18 and 19 years 1,035,338 26,597 14,536 6,885 4,026 940 210 

20 years 523,576 15,342 8,198 4,139 2,299 559 147 

21 year 517,694 15,836 8,662 4,074 2,413 562 125 

22-24 1,572,440 48,171 26,157 12,633 7,201 1,768 412 

25-29 2,675,956 78,673 43,125 20,435 11,356 2,987 770 

30-34 2,515,804 66,554 36,297 17,559 9,446 2,572 680 

35-39 2,521,794 56,446 30,658 15,360 7,813 2,042 573 

40-44 2,556,100 47,109 25,543 13,106 6,261 1,743 456 

45-49 2,636,048 42,981 22,868 12,203 5,911 1,555 444 

50-54 2,516,572 40,903 21,620 11,718 5,624 1,516 425 

55-59 2,170,407 38,423 20,056 10,918 5,447 1,529 473 

60-61 775,227 13,384 6,900 3,865 1,896 557 166 

62-64 1,032,955 17,155 8,695 5,039 2,498 670 253 

65-66 561,670 9,202 4,523 2,768 1,457 350 104 

67-69 725,771 10,716 5,213 3,126 1,778 442 157 

70-74 957,430 13,064 6,189 3,874 2,281 538 182 

75-79 750,040 7,546 3,495 2,266 1,362 333 90 

80-84 579,704 4,123 1,807 1,206 850 187 73 

84- 545,905 2,836 1,255 764 628 121 68 
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9.7. Appendix 7: Data – Collision Vs Time of Day 

Derived from collision time filed of collision table of the SWITRS database. The collision is 
presented as % of total collisions from 2000 – 2021 

 
COLLISION 

HOUR 
TOTAL PDO PAIN OTHER SEVERE FATAL 

0 187,093 122,396 28,349 26,520 7,118 2,710 

1 177,900 117,224 24,077 26,307 7,473 2,819 

2 178,216 118,408 22,994 26,484 7,466 2,864 

3 121,560 81,666 15,788 17,417 4,741 1,948 

4 108,619 72,308 16,096 14,474 3,965 1,776 

5 156,444 99,780 30,609 18,835 4,889 2,331 

6 254,028 157,919 57,186 30,306 6,247 2,370 

7 477,472 288,753 123,319 55,251 8,160 1,989 

8 490,115 302,077 127,399 51,703 7,219 1,717 

9 388,352 236,153 99,842 44,124 6,505 1,728 

10 395,126 236,768 101,447 47,618 7,428 1,865 

11 448,501 265,150 117,213 55,228 8,674 2,236 

12 522,233 308,925 137,438 63,927 9,562 2,381 

13 533,597 313,602 140,790 66,486 10,196 2,523 

14 605,100 355,922 158,590 76,153 11,660 2,775 

15 706,654 418,738 184,012 87,518 13,371 3,015 

16 674,095 399,611 175,025 83,000 13,409 3,050 

17 736,805 430,295 199,445 87,456 15,797 3,812 

18 594,568 345,039 156,287 74,412 14,909 3,921 

19 419,691 244,273 104,191 55,071 12,488 3,668 

20 340,893 200,790 79,779 45,089 11,387 3,848 

21 317,977 192,188 70,272 41,098 10,686 3,733 

22 276,340 171,984 55,433 36,097 9,600 3,226 

23 230,540 148,018 40,296 31,013 8,239 2,974 

SELECT strftime('%H', collision_time) AS collisionhour, count(*) AS Frequency 

FROM collisions 

GROUP BY collisionhour order By collisionhour ASC 
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9.8. Appendix 8: Data – Collision Vs Population size  

Location classification is derived from the SWITRS database. The collision is presented as % of 
total collisions from 2000 – 2021 

 

Location classification 

based on population in 

2019 

POD PAIN OTHER SEVERE FATAL TOTAL 

Un- Incorporated 76,544 21,838 13,644 5,206 1,438 118,670 

< 2.5 K 1,591 437 188 45 11 2,272 

2.5K to 10K 3,697 980 722 154 40 5,593 

10K to 25K 12,507 3,121 1,991 473 139 18,231 

25K to 50K 24,301 8,678 5,177 990 259 39,405 

50K to 100K 49,383 19,268 10,122 1,904 429 81,106 

100K to 250K 52,374 21,705 11,105 2,000 441 87,625 

>250K 59,389 37,717 16,395 3,269 680 117,450 

 

SELECT population, Count(population) AS Frequency 

FROM collisions 

where strfTime('%Y', collisions.collision_date) == '2019' 

GROUP BY population 

order By population ASC 


