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Introduction

Introduction.

Context: A sample of n claims is collected for a specified product of
an insurance company.

Objective: Determine a distribution for the next claim which is robust
to outliers.

Method: Robust combination of the n claims with the prior
information, using the Bayesian model and super heavy-tailed
densities.
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Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 2 / 16



Introduction

Introduction.

Context: A sample of n claims is collected for a specified product of
an insurance company.

Objective: Determine a distribution for the next claim which is robust
to outliers.

Method: Robust combination of the n claims with the prior
information, using the Bayesian model and super heavy-tailed
densities.

Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 2 / 16



Introduction

Bayesian context.

Let X1, ...,Xn be n random variables conditionally independent given
the scale parameter σ, corresponding to the amount of claims.

Let the conditional densities of Xi |σ be given by 1
σ fi (

xi
σ ), where

Xi ∈ R+, σ ∈ R+, i = 1, ..., n.

The prior density of σ is 1
x0

πσ( σ
x0

), where x0 ∈ R+ is a known scale
parameter.

The posterior density of the scale parameter σ is given by

π(σ|x1, . . . , xn) =
1
x0

π( σ
x0

)
∏n

i=1
1
σ fi (

xi
σ )∫∞

0
1
x0

π( σ
x0

)
∏n

i=1
1
σ fi (

xi
σ )dσ

.

The predictive distribution of a next claim Xn+1 is given by

f (y |x1, . . . , xn) =

∫ ∞

0

1

σ
fn+1(

y

σ
)π(σ|x1, . . . , xn)dσ.

Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 3 / 16



Introduction

Bayesian context.

Let X1, ...,Xn be n random variables conditionally independent given
the scale parameter σ, corresponding to the amount of claims.

Let the conditional densities of Xi |σ be given by 1
σ fi (

xi
σ ), where

Xi ∈ R+, σ ∈ R+, i = 1, ..., n.

The prior density of σ is 1
x0

πσ( σ
x0

), where x0 ∈ R+ is a known scale
parameter.

The posterior density of the scale parameter σ is given by

π(σ|x1, . . . , xn) =
1
x0

π( σ
x0

)
∏n

i=1
1
σ fi (

xi
σ )∫∞

0
1
x0

π( σ
x0

)
∏n

i=1
1
σ fi (

xi
σ )dσ

.

The predictive distribution of a next claim Xn+1 is given by

f (y |x1, . . . , xn) =

∫ ∞

0

1

σ
fn+1(

y

σ
)π(σ|x1, . . . , xn)dσ.
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Robustness

Conditions of robustness.

Robustness to outliers depends on the choice of the prior and the
likelihood.

For example, log-normal distributions produce sensitive inference to
outliers.

Outliers in this context is conflicting information, which can be an
extreme observation as well as a misspecification of the scale
parameter of the prior density.

The tails of the prior and the likelihood determine if the posterior
density of σ and the predictive distribution of a next claim are robust
to outliers.
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Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 4 / 16



Robustness

Conditions of robustness.

Our paper established the conditions of robustness. Simply stated,
the theoretical results say that:

1) if the tails of the prior and the likelihood are sufficiently heavy,

2) if the number of conflicting information is less or equal to half of
the observations,
then

σ|xen
L→ σ|xek as the outliers tend to 0 or infinity, where xek is the

vector of non-outliers, and the density of the random variables σ|xen

and σ|xek evaluated at the point y are given by π(y |xen) and π(y |xek).
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Robustness

Conditions of robustness.

What “sufficiently heavy” means?

Densities with exponential tails such as Normal and gamma densities
are not sufficiently enough to produce robust inference.

Heavy-tailed densities such as Student and Pareto are not sufficiently
enough to produce complete robust inference.

However, they will produce “partial” robustness, in the sense that an
outlier will have an impact on the inference, but this impact will be
limited.

Super heavy-tailed densities, such as log-Student or log-Pareto
densities are sufficiently heavy and satisfy the condition of complete
robustness.

The impact of conflicting information will disappear gradually as the
conflict increase.
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Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 6 / 16



Robustness

Conditions of robustness.

What “sufficiently heavy” means?

Densities with exponential tails such as Normal and gamma densities
are not sufficiently enough to produce robust inference.

Heavy-tailed densities such as Student and Pareto are not sufficiently
enough to produce complete robust inference.

However, they will produce “partial” robustness, in the sense that an
outlier will have an impact on the inference, but this impact will be
limited.

Super heavy-tailed densities, such as log-Student or log-Pareto
densities are sufficiently heavy and satisfy the condition of complete
robustness.

The impact of conflicting information will disappear gradually as the
conflict increase.
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Example

Example.

We observe 5 claims X1, . . . ,X5 = 380, 420, 600, 650, 760.

We choose a non-informative distribution for the prior:

1

x0
πσ(

σ

x0
) ∝ 1

σ

We compare two models for the likelihood: the log Normal and the
log Student.

Log Normal:
1

σ
fi (

xi

σ
) =

1

sxi
N

(
log xi − log σ

s

)
,

where N(·) is the density of a N(0,1)
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Example

Example.

Log Student:

1

σ
fi (

xi

σ
) =

1

sxi
T

(
log xi − log σ

s

)
,

where T (·) is the density of a Student with 5 degrees of freedom.

The scale parameter σ behave more like a location parameter while
the parameter s behave like a scale parameter.

When the densities are expressed in term of σ as it is the case in the
posterior density, xi becomes the scale parameter (and behave as a
location parameter).
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Example
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Example

.

Since the tails are too heavy for the posterior mean to exists, we
estimate σ with the posterior median.

We look at the posterior median of σ for different values of x5 for
both models.

If the observation x5 is removed from the analysis, we find that:

the posterior median of σ for the log Normal model is 4.8 (all
numbers are expressed in hundreds)

the posterior median of σ for the log Student model is 4.6

Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 11 / 16



Example

.

Since the tails are too heavy for the posterior mean to exists, we
estimate σ with the posterior median.

We look at the posterior median of σ for different values of x5 for
both models.

If the observation x5 is removed from the analysis, we find that:

the posterior median of σ for the log Normal model is 4.8 (all
numbers are expressed in hundreds)

the posterior median of σ for the log Student model is 4.6

Speaker: Alain Desgagné Coauthor: Jean-François Angers (UQAM)Bayesian Inference Resistant to Outliers, using Super Heavy-tailed Distributions, for the Calculation of PremiumsAugust 12, 2006 11 / 16



Example

.

Since the tails are too heavy for the posterior mean to exists, we
estimate σ with the posterior median.

We look at the posterior median of σ for different values of x5 for
both models.

If the observation x5 is removed from the analysis, we find that:

the posterior median of σ for the log Normal model is 4.8 (all
numbers are expressed in hundreds)

the posterior median of σ for the log Student model is 4.6
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Conclusion

Conclusion.

Robust Bayesian Inference for scale parameter is possible.

Modelling the prior and the likelihood using super heavy-tailed
distributions satisfy the conditions of robustness.

Calculation of premiums resistant to outliers is then possible using the
predictive distribution.
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