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Classical actuarial problem - the collective risk Sparre
Andersen model .

Additional non-traditional feature, investments in a risky asset
with returns modeled by a stochastic process.

Focus of the analysis: the probability of ruin.

Decay of the probability of ruin in the case of Erlang(n)

distribution for inter-claims returns modeled by a geometric
Brownian motion.



Sparre Andersen model

N(t)

Ut:U+Ct—ZXk
k=1

u -initial surplus

® C -premium rate

X iid - "light” claims - Fx ~ exponentially bounded tail

N(t) - renewal process

T1, T, -+ times when claims occur

e 79=0,7,= T, — T,_1 inter-arrival times, independent,
identical distributed r.v.



Sparre Andersen model with investments
e Consider that the company invests all its money, continuously,
in a risky asset modeled by a non-negative stochastic process.
e NOTE: The ruin may happen only at the time of a claim, Ty.
e The model

Ue = ZJ = X,

is a discrete Markov process, where U, = Ur,.



Definitions
The time of ruin:

T, = inf{U(t) < 0] U(0) = u}

The probability of ruin with infinite horizon:

V(u) = P(T, < o).



Objectives

1. An equation for the probability of ruin in the Sparre Andersen
model with investments

2. Particular case: Investigate the decay of the probability of ruin
if the interarrival times are Erlang (n, (), with returns from
investments modeled by GBM (a, 02).

Main tools

1. Integro-differential equation: generators arguments

2. Decay: Karamata-Tauberian arguments



Assumptions

o (Xk)k- claim sizes - "light” or well-behaved distributions Fx
with exponentially bounded tail

1— Fx(x) < ce™®

for some a and ¢ and for all x > 0.

o (7k)k- inter-arrival times - £ satisfies an ODE with constant
coefficients
d

L(—)f(t)=0
Example: f,(t) = Be~"t then ﬁ(%)f}(t) = (% + B)f(t) =0
e Z! - returns from investments up to time t, starting with an
initial capital u- the company invests all its money,
continuously into a risky asset modeled by a non-negative
stochastic process with infinitesimal generator A



Transition operator of the discrete Markov process For our
discrete Markov process Uy, Ui, Us, - - - (where Uy = Ur,), on the
set of all real-valued, bounded, Borel measurable functions g,
define the transition operator

Tkg(u) = E(g(Uk) | Uo = u) = Eug(Uy).
Then M, = f(U,) — S7-8(T1 — 1)f(Uy) is a martingale.
Proof: E(M,,+1 | O'(Uo, Ul,- n)) E(g(U,,H) |

Uo, Ur, -+ Up) =324 —o(T1 — g (Uk)
T18(Un) — T1g(Un) + &(Un) — S h—o(T1 — Ng(Ux) = M



Theorem
If £ satisfies the ODE with constant coefficients

E(%)ﬁ(t) 0
and
1. £%9(0) = 0, the k—th derivatives of £., for k =0,--- ,n— 2
2. limy_ oo f(k)(x) =0,fork=0,---,n—1
then for any g € Dyw)

£ (A) Trg(u) = £7(0) /0 " g(u— x)fx(x)dx

where A denotes the infinitesimal generator of the investment
process Z;, n represents the order of the ODE with constant
coefficients satisfied by f;.



Relation to the ruin probability
Theorem. Assume that on the event {T, = oo}, Uy — o0 as
t — 00. If g € Dy, satisfies

£ (A)g(u) = £ (0) /0 " g(u— x)fx(x)dx

together with the boundary conditions

glu)=1 if wu<O

then



Sketch of proof:
e g(Uy) is a martingale, T, stopping time

o g(u) = E,g(Ut,aT,) =
Eug(Ut, a1 l(1,<73) + Eug (Ut a1 (T,57) =
g(Ur,)P(Ty < Ti) + g(Ur,)P(Ty > Ti) (let t — o0)

e g(u)=1%xP(T, <o)+ 0xP(T, >o0)=P(T, < )



Examples
Integro-differential equation for Cramer Lundberg model - exp(/3)

LD = (S 4 AR =0 = £1(5)= (-2 +9)
therefore

LAV (u) = (—A+ BV ﬁ/ (u— x)fx(x)dx



Examples

If no investments, A = cdi,
(— c—+5 ﬂ/ (u— x)fx(x)dx
V() = 2wy = 2 [ v - 0f(dx



Particular case
e fx ~ finite moments in the neighborhood of the origin
e £~ Erlang (n, B) - L(L)E(t) = (& + B) £ () = 0
o Z ~ GBM(a,0?) returns,

|dZ = (c +aZ)dt + o ZdW, |

d o ,d°
A:(c+au)d +— 2du2

Then the surplus model is:

t t N(t)
U(t) = u+ct+ a/ U(s)ds + a/ U(s)dWs — > Xi.
0 0 0



Integro-differential equation for Erlang(n) with investments
The integro-differential equation for a Sparre Andersen model
when the time in between claims is Erlang(n, 3)

(A + B)"W(u) = " /0 W — ) () dx

together with the boundary conditions for V.
If the investments are made in a stock modeled by a geometric
brownian motion

d oA &
du 2 d?

(—(c+ au) +8)"(u) = /Ooo W(u — )i (x)dx

Then the decay of the probability of ruin is algebraic

lim \ll(u)u_:“r%3 =K,

u—ao0

for (small volatility) 1 < 7 < 2.



Steps in establishing the algebraic decay rate

1. Take Laplace transform

2. Regularity at zero of the homogeneous ODE obtained in the
Laplace side implies that W(s) = s” %2 ; cks*.
3. Karamata -Tauberian arguments



Laplace transform
e Erlang(n, 3)
(—A+ B)"U(s) = B"fx¥(s)

(1 AN(s) -+ 57 = 30(s) () + B

e 2n-th order ODE:

Y@ 4 p1(5)y P 4 pa(s)y "2 -t pan(s)y = panti(s)

e regularity at zero

o0
s)=s" Z cis”
k=0



Regularity at zero
Determine p :

e The coefficient of the s” term should be zero, i.e.
(~0+8)" =" =0

where
5=[0%(p+2) — al(p +1)
e For k=0,1,2,--- ,n—1

2mik

6= pB(1-e")

e distinguish two cases, n odd or even



Case 1. n= odd

e p1 doesn't produce decay of the probability of ruin
e po is the leading term,

lim @(5)527% =K,

s—0
. 1+ 22
= lim VY(v)u "2 =K,
u—o0

forl < 22 < 2.

o2



Case 2. n =even

p1 =0
2a
,02:_2"1‘72
o
_p2—1 \/p2+12 45

e p4, p1 do note produce decay of the probability of ruin

e By Karamata arguments and ordering of the ruin probabilities
for Erlang of different n it can be shown that for any n,

lim W(u)u e = K,

u—0o0

for1<§<2.



Conclusions

1.

3.

For a Sparre Andersen model, perturbed by a stochastic
process, a very general integro-differential equation for the
ruin probability can be written, if the inter-claim arrivals are
mixture of Erlangs.

For any n, the Sparre Andersen model with inter-arrival times
distributed Erlang (n) and investments in a stock modeled by
a GBM with small volatility, has an algebraic decay rate,
depending on the parameter of the investments only.

Conjecture: in the case of high volatility, o2 > 2a, the ruin is
certain.



Future questions
1. f; satisfies an ODE with polynomial coefficients
2. fr ~ Gamma(a, )
3. Gerber-Shiu functions

4. Optimal investment strategy
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